Beechcraft® Baron® (Serials TC-1 thru T-501 except TC-350 and TC-371) 95-55 AND 95-A55 # Pilot's Operating Handbook and FAA Approved Airplane Flight Manual FAA Approved in the Normal Category based on CAR 3. This document must be carried in the airplane at all times and be kept within reach of the pilot during all flight operations. This handbook includes the material required to be furnished to the pilot by CAR 3. | Airplane Serial Number: | |---| | Airplane Registration Number: | | A. C. Jackson Beech Aircraft Corporation DOA CF-2 | This handbook supersedes all BEECH published owner's manuals, flight manuals, and check lists issued for this airplane with the exception of FAA Approved Airplane Flight Manual Supplements. **COPYRIGHT © BEECH 1994** P/N 55-590000-65B Reissued: June, 1982 P/N 55-590000-65B4 Revised: July, 1994 # Published By RAYTHEON AIRCRAFT COMPANY P.O. Box 85 Wichita, Kansas 67201 U.S.A. **Raytheon** Aircraft Beech Hawker # **Raytheon** Aircraft Baron 95-55 And 95-A55 Log of Temporary Changes to the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual P/N 55-590000-65B Changes to this Pilot's Operating Handbook and FAA Approved Airplane Flight Manual must be in the airplane for all flight operations. | Part Number | Subject | | Date | |------------------|-------------------------------|---------|-----------------| | 55-590000-65BTC1 | Fuel Selector
Installation | Placard | Aug 26,
1997 | Note: This page should be filed in the front of the *Pilot's Operating Handbook and FAA Approved Airplane Flight Manual* immediately following the *Title* page. This page replaces any *Log of Temporary Changes* page dated prior to the date in the lower right corner of this page. # BARON 95-55 AND 95-A55 (TC-1 THRU TC-501 EXCEPT TC-350 & TC-371) PILOT'S OPERATING HANDBOOK AND # FAA APPROVED AIRPLANE FLIGHT MANUAL B4 RevisionJuly, 1994 # LOG OF REVISIONS | Page | Description | | | | | | | | |--------------------|--|----|--|--|--|--|--|--| | Title Page | Updated | | | | | | | | | Page A (B4) | New | | | | | | | | | 10-1 thru
10-64 | Revised Section X, Safety
Information (May, 1994) | · | | | | | | | | | | | B4 | | | | | | | # BARON 95-55 AND 95-A55 (TC-1 THRU TC-501 EXCEPT TC-350 & TC-371) PILOT'S OPERATING HANDBOOK AND # FAA APPROVED AIRPLANE FLIGHT MANUAL B3 RevisionOctober, 1990 ## LOG OF REVISIONS | Page | Description | |--------------------|---| | Title Page | Updated | | Page A (B3) | New | | 10-1 thru
10-68 | Revised Section X, Safety Information (October, 1990) | | | | | | | | | В3 | # Baron 95-55 and 95-A55 (TC-1 thru TC-501 Except TC-350 & TC-371) Pilot's Operating Handbook and # FAA Approved Airplane Flight Manual P/N 55-590000-65B2 ## **LOG OF REVISIONS** | Page | Description | |---------------------------|--| | Title Page
Page A (B2) | Updated
New | | 2-10 | Deleted "FAR 91 OPERATIONS" Reference | | 2-23 | Revised "WARNING" | | 4-22,
4-23 | Revised "ICE PROTECTION SYSTEMS" Paragraph | | 4-24 | Shifted Material | B2 | # Baron 95-55 and 95-A55 (TC-1 thru TC-501 Except TC-350 & TC-371) Pilot's Operating Handbook and # FAA Approved Airplane Flight Manual B1 March 1983 ## **LOG OF REVISIONS** | PAGES | DESCRIPTION | |---|---| | Title Page Page A (B1) a & b 2-19 3-2 3-15 7-2 7-16A 7-17 8-26, 8-27 & 8-28 8-46 & 8-47 | Update New Revise "Introduction" and Add "Warning" Revise "Emergency Exit" Placard Update Table of Contents Revise "Emergency Exits" Update Table of Contents Revise "Openable Cabin Windows" Add "Emergency Exits" Revise "Cleaning - Exterior Painted Surfaces" Revise "Consumable Materials" | | | B1 | ## Baron 55, A55 Pilot's Operating Handbook and FAA Approved Airplane Flight Manual | ORIGINAL (A) | | | | | | | N | ١O١ | ۷E | MBER | 1978 | |--------------|--|--|--|------|--|--|---|-----|----|------|------| | REISSUE (B) | | | |
 | | | | | | JUNE | 1982 | # LOG OF REVISIONS | PAGE | DESCRIPTION
OF REVISION | |--|---| | Title Page Logo Page Page A a thru b 1-1 thru 1-22 2-1 thru 2-32 3-1 thru 3-16 4-1 thru 4-26 5-1 thru 5-48 6-1 thru 6-24 7-1 thru 7-40 8-1 thru 8-58 Section 9 | See Log of
Supplements
March 1981 | | | | | | В | ## Baron 55, A55 Serials TC-1 thru TC-501 #### INTRODUCTION This Pilot's Operating Handbook and FAA Approved Airplane Flight Manual is in the format and contains data recommended in the GAMA (General Aviation Manufacturers Association) Handbook Specification Number 1. Use of this specification by all manufacturers will provide the pilot the same type data in the same place in all of the handbooks. In recent years, BEECHCRAFT handbooks contained most of the data now provided, however, the new handbooks contain more detailed data and some entirely new data. For example, attention is called to Section X SAFETY INFOR-MATION. BEECHCRAFT feels it is highly important to have SAFETY INFORMATION in a condensed form in the hands of the pilots. The SAFETY INFORMATION should be read and studied. Periodic review will serve as a reminder of good piloting techniques. #### WARNING Use only genuine BEECHCRAFT or BEECHCRAFT approved parts obtained from BEECHCRAFT approved sources, in connection with the maintenance and repair of Beech airplanes. Genuine BEECHCRAFT parts are produced and inspected under rigorous procedures to ensure airworthiness and suitability for use in Beech airplane applications. Parts purchased from sources other than BEECHCRAFT, even though outwardly identical in appearance, may not have had the required tests and inspections performed, may be different in fabrication techniques and materials, and may be dangerous when installed in an airplane. Revised: March 1983 ## Baron 55, A55 Serials TC-1 thru TC-501 Salvaged airplane parts, reworked parts obtained from non-BEECHCRAFT approved sources, or parts, components, or structural assemblies, the service history of which is unknown or cannot be authenticated, may have been subjected to unacceptable stresses or temperatures or have other hidden damage, not discernible through routine visual or usual nondestructive testing techniques. This may render the part, component or structural assembly, even though originally manufactured by BEECHCRAFT, unsuitable and unsafe for airplane use. BEECHCRAFT expressly disclaims any responsibility for malfunctions, failures, damage or injury caused by use of non-BEECHCRAFT approved parts. #### TABLE OF CONTENTS | SECTION VI | Weight and Balance/Equipment List | |--------------|-------------------------------------| | | Systems Description | | SECTION VIII | Handling, Servicing and Maintenance | | SECTION IX | Supplements | | SECTION X | Safety Information | | b | Revised: March 1983 | # **Raytheon** Aircraft Baron 95-55 And 95-A55 Log of Temporary Changes to the Pilot's Operating Handbook and # FAA Approved Airplane Flight Manual P/N 55-590000-65B Changes to this Pilot's Operating Handbook and FAA Approved Airplane Flight Manual must be in the airplane for all flight operations. | Part Number | Subject | Date | | |------------------|-------------------------------|---------|-----------------| | 55-590000-65BTC1 | Fuel Selector
Installation | Placard | Aug 26,
1997 | Note: This page should be filed in the front of the *Pilot's Operating Handbook and FAA Approved Airplane Flight Manual* immediately following the *Title* page. This page replaces any *Log of Temporary Changes* page dated prior to the date in the lower right corner of this page. ### Baron 95-55 And 95-A55 # **Raytheon** Aircraft # Temporary Change to the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual P/N 55-590000-65BTC1 Publication Affected 95-55 And 95-A55 Pilot's Operating Handbook and FAA Approved Airplane Flight Manual (P/N 55-590000-65B, Reissued June, 1982 or Subsequent) Airplane Serial Numbers Affected TC-1 thru T-501 except TC-350 and TC-371 Description of Change The addition of a placard to the fuel selectors to warn of the no-flow condition that exists between the fuel selec- tor detents. Filing Instructions Insert this temporary change into the 95-55 And 95-A55 Pilot's Operating Handbook and FAA Approved Airplane Flight Manual immediately following page 2-12 (Section II, LIMITATIONS) and retain until rescinded or replaced. # **Raytheon** Aircraft ## **LIMITATIONS** ### **PLACARDS** Located On The Face Of The Fuel Selector Valves, For Those Airplanes In Compliance With S.B. 2670: WARNING - POSITION SELECTORS IN DETENTS ONLY - NO FUEL FLOW TO ENGINES BETWEEN DETENTS Approved: A.C. Jackson Raytheon Aircraft Company al Jack DOA CE-2 # Baron 95-55 and 95-A55 Pilot's Operating Handbook and FAA Approved Airplane Flight Manual # **Supplement Pack** The supplements contained in this supplement pack may not have been approved yet by foreign regulatory agencies. To determine approval status, view our web page at http://pubs.beechcraft.com and perform a search for the supplement part number. Any information pending foreign regulatory approval will be listed in the description. Any Raytheon marks contained in this document are owned by Raytheon Company
and are employed pursuant to a limited license granted by Raytheon Company. Prior to March 26, 2007, Beechcraft Corporation was owned by Raytheon Company but is no longer affiliated with Raytheon Company. Beechcraft Corporation was formerly named Hawker Beechcraft Corporation from March 26, 2007 until March 1, 2013. **55-590000-65 Supplement Pack** # SECTION IX SUPPLEMENTS ### NOTE The supplemental data contained in this section is for equipment that was delivered on the airplane including standard optional equipment that was available, whether it was installed or not. Supplements for equipment for which the vendor obtained a Supplemental Type Certificate were included as loose equipment with the airplane at the time of delivery. These and other supplements for other equipment that was installed after the airplane was delivered new from the factory should be placed in this Supplements Section of this Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. June 1982 9-1 ## NOTE Supplements applicable to equipment other than that installed may, at the discretion of the owner/operator, be removed from the manual. 9-2 June 1982 # PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL P/N 55-590000-65B LOG OF SUPPLEMENTS | Part | when subject equipment i | Rev | | |--------------|---|-----|-------| | Number | Subject | No. | Date | | 55-590000-51 | Goodyear Electrothermal
Propeller Deice System | | 10/78 | | 95-590014-47 | Goodrich Reservoir Type
Pneumatic Deicing
System | | 10/78 | | 131391 | Manual Cowl Flaps
(Kit 55-9017) | | 6/80 | | 58-590000-49 | Inside Cabin Door
Handle With Open
Closed Placard | | 12/90 | | 96-590000-1 | Auxiliary Fuel Tank
Annunciator Light
(Kit 96-9001-1) | | 11/93 | NOTE: Supplements applicable to equipment other than that installed may, at the discretion of the owner/operator, be removed from the manual. # INTENTIONALLY LEFT BLANK 9-4 June 1982 # Recchcraft Twin Engine (Piston) # SECTION X SAFETY INFORMATION TABLE OF CONTENTS | Introduction General Do's Don'ts Sources of Information Pilot's Operating Handbook and FAA Approved | 3 | |--|--| | Do's Don'ts Sources of Information | J | | | 5.
5
6 | | Dilot's Operating Handbook and EAA Approved | 7 | | Fliot's Operating Handbook and FAA Approved | | | Airplane Flight Manual | 7 | | BEECHCRAFT Service Publications | 7 | | Airman's Information Manual Advisory Information FAA Advisory Circulars FAA General Aviation News FAA Accident Prevention Program | 9
10
11
11
15
16 | | Maintenance Hazards of Unapproved Modifications Flight Planning Passenger Information Cards Stowage of Articles Flight Operations General Preflight Inspection Weight and Balance Autopilots and Electric Trim Systems Flutter Turbulent Weather Wind Shear Flight in Icing Conditions Weather Radar Mountain Flying | 17
17
19
20
21
21
21
22
23
26
28
31
36
39 | # Beechcraft Twin Engine (Piston) # SECTION X # SAFETY INFORMATION TABLE OF CONTENTS (Continued) | SUBJECT | PAGE | |---|----------| | VFR at Night
Vertigo - Disorientation
Flight of Multi-Engine Airplanes With One | 40
40 | | Engine Inoperative | 42
44 | | (V _{SSE})
One-Engine-Inoperative Best Rate-of-Climb | 45 | | Speed (V _{YSE})
One-Engine-Inoperative Best Angle-of-Climb | | | Speed (V _{XSE})
Single Engine Service Ceiling | 46 | | Basic Single Engine Procedures
Engine Failure on Takeoff | 47 | | When to Fly Vx, Vy, Vxse and Vyse | 48 | | Spins Descent Vortices - Wake Turbulence | 53 | | Takeoff and Landing Conditions Medical Facts for Pilots | 55 | | General
Fatigue | 55
56 | | HypoxiaHyperventilation | 58 | | Alcohol
Drugs
Scuba Diving | 60 | | Carbon Monoxide and Night Vision
Decompression Sickness | 61 | | A Final Word | 63 | 10 -2 May, 1994 # INTRODUCTION Beech Aircraft Corporation has developed this special summary publication of safety information to refresh pilots' and owners' knowledge of safety related subjects. Topics in this publication are dealt with in more detail in FAA Advisory Circulars and other publications pertaining to the subject of safe flying. The skilled pilot recognizes that safety consciousness is an integral - and never-ending - part of his or her job. Be thoroughly familiar with your airplane. Know its limitations and your own. Maintain your currency, or fly with a qualified instructor until you are current and proficient. Practice emergency procedures at safe altitudes and airspeeds, preferably with a qualified instructor pilot, until the required action can be accomplished without reference to the manual. Periodically review this Safety Information as part of your recurrency training regimen. BEECHCRAFT airplanes are designed and built to provide you with many years of safe and efficient transportation. By maintaining your BEECHCRAFT properly and flying it prudently you will realize its full potential. Beech Aircraft Corporation WARNING Because your airplane is a high performance, high speed transportation vehicle, designed for operation in a three-dimensional environment, special safety precautions must be observed to reduce the risk of fatal or serious injuries to the pilot(s) and occupant(s). It is mandatory that you fully understand the contents of this publication and the other operating and maintenance manuals which accompany the airplane; that FAA requirements for ratings, certifications and review be scrupulously complied with; and that you allow only persons who are properly licensed and rated, and thoroughly familiar with the contents of the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual to operate the airplane. IMPROPER OPERATION OR MAINTENANCE OF AN AIR-PLANE, NO MATTER HOW WELL BUILT INITIALLY, CAN RESULT IN CONSIDERABLE DAMAGE OR TOTAL DESTRUCTION OF THE AIRPLANE, ALONG WITH SERI-OUS OR FATAL INJURIES TO ALL OCCUPANTS. 10-4 May, 1994 ## **GENERAL** As a pilot, you are responsible to yourself and to those who fly with you, to other pilots and their passengers and to people on the ground, to fly wisely and safely. The following material in this Safety Information publication covers several subjects in limited detail. Here are some condensed Do's and Don'ts. ## DO'S Be thoroughly familiar with your airplane, know its limitations and your own. Be current in your airplane, or fly with a qualified instructor until you are current. Practice until you are proficient. Preplan all aspects of your flight - including a proper weather briefing and adequate fuel reserves. Use services available - weather briefing, inflight weather and Flight Service Station. Carefully preflight your airplane. Use the approved checklist. Have more than enough fuel for takeoff, plus the trip, and an adequate reserve. Be sure your weight loading and C.G. are within limits. Use seatbelts and shoulder harnesses at all times. Be sure all loose articles and baggage are secured. Check freedom and proper direction of operation of all controls during preflight. Maintain the prescribed airspeeds in takeoff, climb, descent, and landing. # Section X Safety Information # Rechcraft Twin Engine (Piston) Avoid wake turbulence (Vortices). Preplan fuel and fuel tank management before the actual flight. Utilize auxiliary tanks only in level cruise flight. Take off and land on the fullest main tank, NEVER use auxiliary fuel tanks for take off or landing. Practice emergency procedures at safe altitudes and airspeeds, preferably with a qualified instructor pilot, until the required action is instinctive. Keep your airplane in good mechanical condition. Stay informed and alert; fly in a sensible manner. ### **DON'TS** Don't take off with frost, ice or snow on the airplane. Don't take off with less than minimum recommended fuel, plus adequate reserves, and don't run the tank dry before switching. Don't fly in a reckless, show-off, or careless manner. Don't fly into thunderstorms or severe weather. Don't fly in possible icing conditions unless the airplane is approved, properly equipped, and all required equipment is operational for flight in icing conditions. Don't fly close to mountainous terrain. Don't apply controls abruptly or with high forces that could exceed design loads of the airplane. Don't fly into weather conditions that are beyond your ratings or current proficiency. Don't fly when physically or mentally exhausted or below par. 10-6 May, 1994 Don't trust to luck. ## SOURCES OF INFORMATION There is a wealth of information available to the pilot created for the sole purpose of making your flying safer, easier and more efficient. Take advantage of this knowledge and be prepared for an emergency in the event that one should occur. # PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL You must be thoroughly familiar with the contents of your operating manuals, placards, and check lists to ensure safe utilization of your airplane. When the airplane was manufactured, it was equipped with one or more of the following: placards, Owner's Manual, FAA Flight Manual, Approved Airplane Flight Manual Supplements, Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. Beech has revised and reissued many of the early manuals for certain models of airplanes in GAMA Standard Format as Pilot's Operating Handbooks and FAA Approved Airplane Flight Manuals. For simplicity and convenience, all official
manuals in various models are referred to as the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. If the airplane has changed ownership, the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual may have been misplaced or may not be current. Replacement handbooks may be obtained from any **BEECHCRAFT** Authorized Outlet. # BEECHCRAFT SERVICE PUBLICATIONS Beech Aircraft Corporation publishes a wide variety of manuals, service letters, service instructions, service bulletins, safety communiques and other publications for the various models of BEECHCRAFT airplanes. Information on how to obtain publications relating to your airplane is contained in BEECHCRAFT Service Bulletin number 2001, entitled "General - BEECHCRAFT Service Publications - What is Available and How to Obtain It." Beech Aircraft Corporation automatically mails original issues and revisions of BEECHCRAFT Service Bulletins (Mandatory, Recommended and Optional), FAA Approved Airplane Flight Manual Supplements, reissues and revisions of FAA Approved Airplane Flight Manuals, Flight Handbooks, Owners Manuals, Pilot's Operating Manuals and Pilot's Operating Handbooks, and original issues and revisions of BEECHCRAFT Safety Communiques to BEECH-CRAFT Owner addresses as listed by the FAA Aircraft Registration Branch List and the BEECHCRAFT International Owner Notification Service List. While this information is distributed by Beech Aircraft Corporation, Beech can not make changes in the name or address furnished by the FAA. The owner must contact the FAA regarding any changes to name or address. Their address is: FAA Aircraft Registration Branch (AAC250) P.O. Box 25082, Oklahoma City, OK 73125, Phone (405) 680-2131. It is the responsibility of the FAA owner of record to ensure that any mailings from Beech are forwarded to the proper persons. Often the FAA registered owner is a bank or financing company or an individual not in possession of the airplane. Also, when an airplane is sold, there is a lag in processing the change in registration with the FAA. If you are a new owner, contact your BEECHCRAFT Authorized Outlet and ensure your manuals are up to date. Beech Aircraft Corporation provides a subscription service which provides for direct factory mailing of BEECHCRAFT publications applicable to a specific serial number airplane. Details concerning the fees and ordering information for this owner subscription service are contained in Service Bulletin number 2001. For owners who choose not to apply for a Publications Revision Subscription Service, Beech provides a free Owner 10-8 May, 1994 Notification Service by which owners are notified by post card of BEECHCRAFT manual reissues, revisions and supplements which are being issued applicable to the airplane owned. On receipt of such notification, the owner may obtain the publication through a BEECHCRAFT Authorized Outlet. This notification service is available when requested by the owner. This request may be made by using the owner notification request card furnished with the loose equipment of each airplane at the time of delivery, or by a letter requesting this service, referencing the specific airplane serial number owned. Write to: Supervisor, Special Services Dept. 52 Beech Aircraft Corporation P.O. Box 85 Wichita, Kansas 67201-0085 From time to time Beech Aircraft Corporation issues BEECHCRAFT Safety Communiques dealing with the safe operation of a specific series of airplanes, or airplanes in general. It is recommended that each owner/operator maintain a current file of these publications. Back issues of BEECHCRAFT Safety Communiques may be obtained without charge by sending a request, including airplane model and serial number, to the Supervisor, Special Services, at the address listed above. Airworthiness Directives (AD's) are not issued by the manufacturer. They are issued and available from the FAA. # FEDERAL AVIATION REGULATIONS FAR Part 91, General Operating and Flight Rules, is a document of law governing operation of airplanes and the owner's and pilot's responsibilities. Some of the subjects covered are: Responsibilities and authority of the pilot-in-command # Section X Safety Information # Rechcraft Twin Engine (Piston) Certificates required Liquor and Drugs Flight plans Preflight action Fuel requirements Flight Rules Maintenance, preventive maintenance, alterations, inspection and maintenance records You, as a pilot, have responsibilities under government regulations. The regulations are designed for your protection and the protection of your passengers and the public. Compliance is mandatory. ### **AIRWORTHINESS DIRECTIVES** FAR Part 39 specifies that no person may operate a product to which an Airworthiness Directive issued by the FAA applies, except in accordance with the requirements of that Airworthiness Directive. ### AIRMAN'S INFORMATION MANUAL The Airman's Information Manual (AIM) is designed to provide airmen with basic flight information and ATC procedures for use in the national airspace system of the United States. It also contains items of interest to pilots concerning health and medical facts, factors affecting flight safety, a pilot/controller glossary of terms in the Air Traffic Control system, information on safety, and accident/hazard reporting. It is revised at six-month intervals and can be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. This document contains a wealth of pilot information. Among the subjects are: Controlled Airspace 10-10 May, 1994 Deechcraft Twin Engine (Piston) Section X Safety Information **Emergency Procedures** Services Available to Pilots Weather and Icing Radio Phraseology and Technique Mountain Flying Airport Operations Wake Turbulence - Vortices Clearances and Separations Medical Facts for Pilots Preflight Bird Hazards Departures - IFR Good Operating Practices Enroute - IFR Airport Location Directory Arrival - IFR All pilots must be thoroughly familiar with and use the information in the AIM. ### ADVISORY INFORMATION NOTAMS (Notices to Airmen) are documents that have information of a time-critical nature that would affect a pilot's decision to make a flight; for example, an airport closed, terminal radar out of service, or enroute navigational aids out of service. ## **FAA ADVISORY CIRCULARS** The FAA issues Advisory Circulars to inform the aviation public in a systematic way of nonregulatory material of interest. Advisory Circulars contain a wealth of information with which the prudent pilot should be familiar. A complete list of current FAA Advisory Circulars is published in AC 00-2, which lists Advisory Circulars that are for sale, as well as those distributed free of charge by the FAA, and provides # Section X Safety Information # Rechcraft Twin Engine (Piston) ordering information. Many Advisory Circulars which are for sale can be purchased locally in aviation bookstores or at FBO's. These documents are subject to periodic revision. Be certain the Advisory Circular you are using is the latest revision available. Some of the Advisory Circulars of interest to pilots are: | *00-6 | Aviation Weather | |--------|---| | 00-24 | Thunderstorms | | 00-30 | Rules of Thumb for Avoiding or Minimizing Encounters with Clear Air Turbulence | | *00-45 | Aviation Weather Services | | 00-46 | Aviation Safety Reporting Program | | 20-5 | Plane Sense | | 20-32 | Carbon Monoxide (CO) Contamination in Aircraft - Detection and Prevention | | 20-35 | Tie-Down Sense | | 20-43 | Aircraft Fuel Control | | 20-105 | Engine-Power Loss Accident Prevention | | 20-113 | Pilot Precautions and Procedures to
be Taken in Preventing Aircraft Recip-
rocating Engine Induction System and
Fuel System Icing Problems | | 20-125 | Water in Aviation Fuels | | 21-4 | Special Flight Permits for Operation of
Overweight Aircraft | | 43-9 | Maintenance Records: General Aviation Aircraft | 10-12 May, 1994 | Deechcraft
Twin Engine (Pisto | Section X
on) Safety Information | |----------------------------------|---| | 43-12 | Preventive Maintenance | | 60-4 | Pilot's Spatial Disorientation | | 60-6 | Airplane Flight Manuals (AFM),
Approved Manual Materials, Markings
and Placards - Airplanes | | 60-12 | Availability of Industry-Developed Guidelines for the Conduct of the Biennial Flight Review | | 60-13 | The Accident Prevention Counselor
Program | | *61-9 | Pilot Transition Courses for Complex
Single-Engine and Light Twin-Engine
Airplanes | | *61-21 | Flight Training Handbook | | *61-23 | Pilot's Handbook of Aeronautical
Knowledge | | *61 -27 | Instrument Flying Handbook | | 61-67 | Hazards Associated with Spins in Air-
planes Prohibited from Intentional
Spinning. | | 61-84 | Role of Preflight Preparation | | *67-2 | Medical Handbook for Pilots | | 90-23 | Aircraft Wake Turbulence | | 90-42 | Traffic Advisory Practices at Nontower Airports | | 90-48 | Pilot's Role in Collision Avoidance | | 90-66 | Recommended Standard Traffic Pat-
terns for Airplane Operations at
Uncontrolled Airports | | Section X
Safety Information | Reechcraft
Twin Engine (Piston) | |---------------------------------|--| | 90-85 | Severe Weather Avoidance Plan (SWAP) | | 91-6 | Water, Slush and Snow on the Run-
way | | 91-13 | Cold Weather Operation of Aircraft | | *91-23 | Pilot's Weight and Balance Handbook | | 91-26 | Maintenance and Handling of Air
Driven Gyroscopic Instruments | | 91-33 | Use of Alternate Grades of Aviation Gasoline for Grade 80/.87 | | 91-35 | Noise, Hearing Damage, and Fatigue in General Aviation Pilots | | 91-43 |
Unreliable Airspeed Indications | | 91-44 | Operational and Maintenance Practices for Emergency Locator Transmitters and Receivers | | 91-46 | Gyroscopic Instruments - Good Operating Practices | | 91-50 | Importance of Transponder Operations and Altitude Reporting | | 91-51 | Airplane Deice and Anti-ice Systems | | 91-59 | Inspection and Care of General Aviation Aircraft Exhaust Systems | | 91-65 | Use of Shoulder Harness in Passenger
Seats | | 103-4 | Hazards Associated with Sublimation of Solid Carbon Dioxide (Dry Ice) Aboard Aircraft | | 135-9 | FAR Part 135 Icing Limitations | 10-14 May, 1994 210-5A Military Flying Activities * For Sale ## **FAA GENERAL AVIATION NEWS** FAA General Aviation News is published by the FAA in the interest of flight safety. The magazine is designed to promote safety in the air by calling the attention of general aviation airmen to current technical, regulatory and procedural matters affecting the safe operation of airplanes. FAA General Aviation News is sold on subscription by the Superintendent of Documents, Government Printing Office, Washington D.C., 20402. ### FAA ACCIDENT PREVENTION PROGRAM The FAA assigns accident prevention specialists to each Flight Standards and General Aviation District Office to organize accident prevention program activities. In addition, there are over 3,000 volunteer airmen serving as accident prevention counselors, sharing their technical expertise and professional knowledge with the general aviation community. The FAA conducts seminars and workshops, and distributes invaluable safety information under this program. Usually the airport manager, the FAA Flight Service Station (FSS), or Fixed Base Operator (FBO), will have a list of accident prevention counselors and their phone numbers available. All Flight Standards and General Aviation District Offices have a list of the counselors serving the District. Before flying over unfamiliar territory, such as mountainous terrain or desert areas, it is advisable for transient pilots to consult with local counselors. They will be familiar with the more desirable routes, the wind and weather conditions, and the service and emergency landing areas that are available along the way. They can also offer advice on the type of emergency equipment you should be carrying. # Reechcraft Twin Engine (Piston) ### ADDITIONAL INFORMATION The National Transportation Safety Board and the Federal Aviation Administration periodically issue, in greater detail, general aviation pamphlets concerning aviation safety. FAA Regional Offices also publish material under the FAA General Aviation Accident Prevention Program. These can be obtained at FAA Offices, Weather Stations, Flight Service Stations or Airport Facilities. Some of these are titled: 12 Golden Rules for Pilots Weather or Not Disorientation Plane Sense Weather Info Guide for Pilots Wake Turbulence Don't Trust to Luck, Trust to Safety Rain, Fog. Snow Thunderstorm - TRW Icina Pilot's Weather Briefing Guide Thunderstorms Don't Flirt ... Skirt 'em IFR-VFR - Either Way Disorientation Can Be Fatal IFR Pilot Exam-O-Grams VFR Pilot Exam-O-Grams Flying Light Twins Safely Tips on Engine Operation in Small General Aviation Aircraft Estimating Inflight Visibility Is the Aircraft Ready for Flight Tips on Mountain Flying Tips on Desert Flying Always Leave Yourself An Out Safety Guide for Private Aircraft Owners Tips on How to Use the Flight Planner Tips on the Use of Ailerons and Rudder Some Hard Facts About Soft Landings 10-16 May, 1994 Propeller Operation and Care Torque "What it Means to the Pilot" Weight and Balance. An Important Safety Consideration for Pilots # GENERAL INFORMATION ON SPECIFIC TOPICS ### MAINTENANCE Safety of flight begins with a well maintained airplane. Make it a habit to keep your airplane and all of its equipment in airworthy condition. Keep a "squawk list" on board, and see that all discrepancies, however minor, are noted and promptly corrected. Schedule your maintenance regularly, and have your airplane serviced by a reputable organization. Be suspicious of bargain prices for maintenance, repair and inspections. It is the responsibility of the owner and the operator to assure that the airplane is maintained in an airworthy condition and that proper maintenance records are kept. Use only genuine BEECHCRAFT or BEECHCRAFT approved parts obtained from BEECHCRAFT approved sources, in connection with the maintenance and repair of Beech airplanes. Genuine BEECHCRAFT parts are produced and inspected under rigorous procedures to insure airworthiness and suitability for use in Beech airplane applications. Parts purchased from sources other than BEECHCRAFT, even though outwardly identical in appearance, may not have had the required tests and inspections performed, may be different in fabrication techniques and materials, and may be dangerous when installed in an airplane. Salvaged airplane parts, reworked parts obtained from non-BEECHCRAFT approved sources or parts, components, or structural assemblies, the service history of which is unknown or cannot be authenticated, may have been subjected to unacceptable stresses or temperatures or have other hidden damage not discernible through routine visual or usual nondestructive testing techniques. This may render the part, component or structural assembly, even though originally manufactured by BEECHCRAFT, unsuitable and unsafe for airplane use. BEECHCRAFT expressly disclaims any responsibility for malfunctions, failures, damage or injury caused by use of non-BEECHCRAFT parts. Airplanes operated for Air Taxi or other than normal operation, and airplanes operated in humid tropics, or cold and damp climates, etc., may need more frequent inspections for wear, corrosion and/or lack of lubrication. In these areas, periodic inspections should be performed until the operator can set his own inspection periods based on experience. ## NOTE The required periods do not constitute a guarantee that the item will reach the period without malfunction, as the aforementioned factors cannot be controlled by the manufacturer. Corrosion and its effects must be treated at the earliest possible opportunity. A clean, dry surface is virtually immune to corrosion. Make sure that all drain holes remain unobstructed. Protective films and sealants help to keep corrosive agents from contacting metallic surfaces. Corrosion inspections should be made most frequently under high-corrosion-risk operating conditions, such as in areas of 10-18 May, 1994 excessive airborne salt concentrations (e.g., near the sea) and in high-humidity areas (e.g., tropical regions). If you have purchased a used airplane, have your mechanic inspect the airplane registration records, logbooks and maintenance records carefully. An unexplained period of time for which the airplane has been out of service, or unexplained significant repairs may well indicate the airplane has been seriously damaged in a prior accident. Have your mechanics inspect a used airplane carefully. Take the time to ensure that you really know what you are buying when you buy a used airplane. #### HAZARDS OF UNAPPROVED MODIFICATIONS Many airplane modifications are approved under Supplemental Type Certificates (STC's). Before installing an STC on your airplane, check to make sure that the STC does not conflict with other STC's that have already been installed. Because approval of an STC is obtained by the individual STC holder based upon modification of the original type design, it is possible for STC's to interfere with each other when both are installed. Never install an unapproved modification of any type, however innocent the apparent modification may seem. Always obtain proper FAA approval. Airplane owners and maintenance personnel are particularly cautioned not to make attachments to, or otherwise modify, seats from original certification without approval from the FAA Engineering and Manufacturing District Office having original certification responsibility for that make and model. Any unapproved attachment or modification to seat structure may increase load factors and metal stress which could cause failure of seat structure at a lesser "G" force than exhibited for original certification. Examples of unauthorized attachments found are drilling holes in seat tubing to attach fire extinguishers and drilling holes to attach approach plate book bins to seats. ### FLIGHT PLANNING FAR Part 91 requires that each pilot in command, before beginning a flight, familiarize himself with all available information concerning that flight. Obtain a current and complete preflight briefing. This should consist of local, enroute and destination weather and enroute navaid information. Enroute terrain and obstructions, alternate airports, airport runways active, length of runways, and takeoff and landing distances for the airplane for conditions expected should be known. The prudent pilot will review his planned enroute track and stations and make a list for quick reference. It is strongly recommended a flight plan be filed with Flight Service Stations, even though the flight may be VFR. Also, advise Flight Service Stations of changes or delays of one hour or more and remember to close the flight plan at destination. The pilot must be completely familiar with the performance of the airplane and performance data in the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. The resultant effect of temperature and pressure altitude must be taken into account in performance if not accounted for on the charts. An applicable FAA Approved Airplane Flight Manual must be aboard the airplane at all times and include the weight and balance forms and equipment list. ### PASSENGER INFORMATION CARDS Beech has available, for most current production airplanes, passenger information cards which contain important information on the proper use of restraint systems, oxygen 10-20 May, 1994 masks, emergency exits and
emergency bracing procedures. Passenger information cards may be obtained at any BEECHCRAFT Authorized Outlet. A pilot should not only be familiar with the information contained in the cards, but should always, prior to flight, inform the passengers of the information contained in the information cards. The pilot should orally brief the passengers on the proper use of restraint systems, doors and emergency exits, and other emergency procedures, as required by Part 91 of the FAR's. ### STOWAGE OF ARTICLES The space between the seat pan and the floor is utilized to provide space for seat displacement. If hard, solid objects are stored beneath seats, the energy absorbing feature is lost and severe spinal injuries can occur to occupants. Prior to flight, pilots should insure that articles are not stowed beneath seats that would restrict seat pan energy absorption or penetrate the seat in event of a high vertical velocity accident. ### **FLIGHT OPERATIONS** #### GENERAL The pilot MUST be thoroughly familiar with ALL INFORMA-TION published by the manufacturer concerning the airplane, and is required by law to operate the airplane in accordance with the FAA Approved Airplane Flight Manual and placards installed. ### PREFLIGHT INSPECTION In addition to maintenance inspections and preflight information required by FAR Part 91, a complete, careful preflight inspection is imperative. Each airplane has a checklist for the preflight inspection which must be followed. USE THE CHECKLIST. ### WEIGHT AND BALANCE Maintaining center of gravity within the approved envelope throughout the planned flight is an important safety consideration. The airplane must be loaded so as not to exceed the weight and center of gravity (C.G.) limitations. Airplanes that are loaded above the maximum takeoff or landing weight limitations will have an overall lower level of performance compared to that shown in the Performance section of the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. If loaded above maximum takeoff weight, takeoff distance and the landing distance will be longer than that shown in the Performance section; the stalling speed will be higher, rate of climb, the cruising speed, and the range of the airplane at any level of fuel will all be lower than shown in the Performance section. If an airplane is loaded so that the C.G. is forward of the forward limit it will require additional control movements for maneuvering the airplane with correspondingly higher control forces. The pilot may have difficulty during takeoff and landing because of the elevator control limits. If an airplane is loaded aft of the aft C.G. limitation, the pilot will experience a lower level of stability. Airplane characteristics that indicate a lower stability level are; lower control forces, difficulty in trimming the airplane, lower control forces for maneuvering with attendant danger of structural overload, decayed stall characteristics, and a lower level of lateral-directional damping. Ensure that all cargo and baggage is properly secured before takeoff. A sudden shift in balance at rotation can cause controllability problems. 10-22 May, 1994 ### AUTOPILOTS AND ELECTRIC TRIM SYSTEMS Because there are several different models of autopilots and electric trim systems installed in Beech airplanes and different installations and switch positions are possible from airplane to airplane, it is essential that every owner/operator review his Airplane Flight Manual (AFM) Supplements and ensure that the supplements properly describe the autopilot and trim installations on his specific airplane. Each pilot, prior to flight, must be fully aware of the proper procedures for operation, and particularly disengagement, for the system as installed. In addition to ensuring compliance with the autopilot manufacturer's maintenance requirements, all owners/operators should thoroughly familiarize themselves with the operation, function and procedures described in the Airplane Flight Manual Supplements. Ensure a full understanding of the methods of engagement and disengagement of the autopilot and trim systems. Compare the descriptions and procedures contained in the Supplements to the actual installation in the airplane to ensure that the supplement accurately describes your installation. Test that all buttons, switches and circuit breakers function as described in the Supplements. If they do not function as described, have the system repaired by a qualified service agency. If field service advice or assistance is necessary, contact Beech Aircraft Corporation, Customer Support Department. As stated in all AFM Supplements for autopilot systems and trim systems installed on Beech airplanes, the preflight check must be conducted before every flight. The preflight check assures not only that the systems and all of their features are operating properly, but also that the pilot, before flight, is familiar with the proper means of engagement and disengagement of the autopilot and trim system. Autopilot Airplane Flight Manual Supplements caution against trying to override the autopilot system during flight without disengaging the autopilot because the autopilot will continue to trim the airplane and oppose the pilot's actions. This could result in a severely out of trim condition. This is a basic feature of all autopilots with electric trim follow-up. Do not try to manually override the autopilot during flight. IN CASE OF EMERGENCY, YOU CAN OVERPOWER THE AUTOPILOT TO CORRECT THE ATTITUDE, BUT THE AUTOPILOT AND ELECTRIC TRIM MUST THEN IMMEDIATELY BE DISENGAGED. It is often difficult to distinguish an autopilot malfunction from an electric trim system malfunction. The safest course is to deactivate both. Do not re-engage either system until after you have safely landed. Then have the systems checked by a qualified service facility prior to further flight. Depending upon the installation on your airplane, the following additional methods may be available to disengage the autopilot or electric trim in the event that the autopilot or electric trim does not disengage utilizing the disengage methods specified in the Supplements. Transient control forces may occur when the autopilot is disengaged. - 1. Turn off the autopilot master switch, if installed. - Pull the autopilot and trim circuit breaker(s) or turn off the autopilot switch breaker, if installed. - 3. Turn off the RADIO MASTER SWITCH, if installed, and 10-24 May, 1994 if the autopilot system and the trim system are wired through this switch. # CAUTION Radios, including VHF COMM are also disconnected when the radio master switch is off. Turn off the ELECTRIC MASTER SWITCH. WARNING Most electrically powered systems will be inoperative. Consult the AFM for further information. - 5. Push the GA switch on throttle grip, if installed (depending upon the autopilot system). - Push TEST EACH FLT switch on the autopilot controller, if installed. ## NOTE After the autopilot is positively disengaged, it may be necessary to restore other electrical functions. Be sure when the master switches are turned on that the autopilot does not re-engage. The above ways may or may not be available on your autopilot. It is essential that you read your airplane's AFM SUPPLEMENT for your autopilot system and check each function and operation on your system. The engagement of the autopilot must be done in accordance with the instructions and procedures contained in the AFM SUPPLEMENT. Particular attention must be paid to the autopilot settings prior to engagement. If you attempt to engage the autopilot when the airplane is out of trim, a large attitude change may occur. IT IS ESSENTIAL THAT THE PROCEDURES SET FORTH IN THE APPROVED AFM SUPPLEMENTS FOR YOUR SPECIFIC INSTALLATION BE FOLLOWED BEFORE ENGAGING THE AUTOPILOT. #### FLUTTER Flutter is a phenomenon that can occur when an aerodynamic surface begins vibrating. The energy to sustain the vibration is derived from airflow over the surface. The amplitude of the vibration can (1) decrease, if airspeed is reduced; (2) remain constant, if airspeed is held constant and no failures occur; or (3) increase to the point of selfdestruction, especially if airspeed is high and/or is allowed to increase. Flutter can lead to an in-flight break up of the airplane. Airplanes are designed so that flutter will not occur in the normal operating envelope of the airplane as long as the airplane is properly maintained. In the case of any airplane, decreasing the damping and stiffness of the structure or increasing the trailing edge weight of control surfaces will tend to cause flutter. If a combination of those factors is sufficient, flutter can occur within the normal operating envelope. Owners and operators of airplanes have the primary responsibility for maintaining their airplanes. To fulfill that responsibility, it is imperative that all airplanes receive a thorough 10-26 May, 1994 preflight inspection. Improper tension on the control cables or any other loose condition in the flight control system can also cause or contribute to flutter. Pilots should pay particular attention to control surface attachment hardware including tab pushrod attachment during preflight inspection. Looseness of fixed surfaces or movement of control surfaces other than in the normal direction of travel should be rectified before flight. Further, owners should take their airplanes to mechanics who have access to current technical publications and prior experience in properly maintaining that make and model of airplane. The owner should make certain that control cable tension inspections are performed as outlined in the applicable Beech Inspection Guide. Worn control surface attachment hardware must be replaced. Any repainting or repair of a moveable control surface will require a verification of the control surface balance before the airplane is returned to service. Control surface drain holes must be open to prevent freezing of
accumulated moisture, which could create an increased trailing-edgeheavy control surface and flutter. If an excessive vibration, particularly in the control column and rudder pedals, is encountered in flight, this may be the onset of flutter and the procedure to follow is: - 1. IMMEDIATELY REDUCE AIRSPEED (lower the landing gear, if necessary). - 2. RESTRAIN THE CONTROLS OF THE AIRPLANE UNTIL THE VIBRATION CEASES. - 3. FLY AT THE REDUCED AIRSPEED AND LAND AT THE NEAREST SUITABLE AIRPORT. - 4. HAVE THE AIRPLANE INSPECTED FOR AIRFRAME DAMAGE, CONTROL SURFACE ATTACHING HARD-WARE CONDITION/SECURITY, TRIM TAB FREE PLAY, PROPER CONTROL CABLE TENSION, AND CONTROL SURFACE BALANCE BY ANOTHER MECHANIC WHO IS FULLY QUALIFIED. ### TURBULENT WEATHER A complete and current weather briefing is a requirement for a safe trip. Updating of weather information en route is also essential. The wise pilot knows that weather conditions can change quickly, and treats weather forecasting as professional advice, rather than an absolute fact. He obtains all the advice he can, but stays alert to any sign or report of changing conditions. Plan the flight to avoid areas of reported severe turbulence. It is not always possible to detect individual storm areas or find the in-between clear areas. The National Weather Service classifies turbulence as follows: | Class of
Turbulence | Effect | |------------------------|--| | Extreme | Airplane is violently tossed about and is practically impossible to control. May cause structural damage. | | Severe | Airplane may be momentarily out of control. Occupants are thrown violently against the belts and back into the seat. Unsecured objects are tossed about. | | Moderate | Occupants require seat belts and occasionally are thrown against the belt. Unsecured objects move about. | 10-28 May, 1994 Light Occupants may be required to use seat belts, but objects in the airplane remain at rest. Thunderstorms, squall lines and violent turbulence should be regarded as extremely dangerous and must be avoided. Hail and tornadic wind velocities can be encountered in thunderstorms that can destroy any airplane, just as tornadoes destroy nearly everything in their path on the ground. Thunderstorms also pose the possibility of a lightning strike on an airplane. Any structure or equipment which shows evidence of a lightning strike, or of being subjected to a high current flow due to a strike, or is a suspected part of a lightning strike path through the airplane should be thoroughly inspected and any damage repaired prior to additional flight. A roll cloud ahead of a squall line or thunderstorm is visible evidence of extreme turbulence; however, the absence of a roll cloud should not be interpreted as denoting that severe turbulence is not present. Even though flight in severe turbulence must be avoided, flight in turbulent air may be encountered unexpectedly under certain conditions. The following recommendations should be observed for airplane operation in turbulent air: Flying through turbulent air presents two basic problems, the answer to both of which is proper airspeed. On one hand, if you maintain an excessive airspeed, you run the risk of structural damage or failure; on the other hand, if your airspeed is too low, you may stall. If turbulence is encountered, reduce speed to the turbulent air penetration speed, if given, or to the maneuvering speed, which is listed in the Limitations section of the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. ## Section X Safety Information # Recchcraft Twin Engine (Piston) These speeds give the best assurance of avoiding excessive stress loads, and at the same time provide the proper margin against inadvertent stalls due to gusts. Beware of overcontrolling in an attempt to correct for changes in attitude; applying control pressure abruptly will build up G-forces rapidly and could cause structural damage or even failure. You should watch particularly your angle of bank, making turns as wide and shallow as possible. Be equally cautious in applying forward or back pressure to keep the airplane level. Maintain straight and level attitude in either up or down drafts. Use trim sparingly to avoid being grossly out of trim as the vertical air columns change velocity and direction. If necessary to avoid excessive airspeeds, lower the landing gear. #### WIND SHEAR Wind shears are rapid, localized changes in wind direction, which can occur vertically as well as horizontally. Wind shear can be very dangerous to all airplanes, large and small, particularly on approach to landing when airspeeds are slow. A horizontal wind shear is a sudden change in wind direction or speed that can, for example, transform a headwind into a tailwind, producing a sudden decrease in indicated airspeed because of the inertia of the airplane. A vertical wind shear, is a sudden updraft or downdraft. Microbursts are intense, highly localized severe downdrafts. The prediction of wind shears is far from an exact science. Monitor your airspeed carefully when flying near storms, particularly on approach. Be mentally prepared to add power and go around at the first indication that a wind shear is being encountered. 10-30 May, 1994 ### FLIGHT IN ICING CONDITIONS Every pilot should be intimately acquainted with the FAA Approved National Weather Service definitions for ice intensity and accumulation which we have reprinted below: | Intensity | Ice Accumulation | |-----------|--| | Trace | Ice becomes perceptible. Rate of accumulation slightly greater than rate of sublimation. It is not hazardous even though deicing/anti-icing equipment is not utilized, unless encountered for an extended period of time (over 1 hour). | | Light | The rate of accumulation may create a problem if flight is prolonged in this environment (over 1 hour). Occasional use of deicing/anti-icing equipment removes/prevents accumulation. It does not present a problem if the deicing/anti-icing equipment is used. | | Moderate | The rate of accumulation is such that even short encounters become potentially hazardous and use of deicing/anti-icing equipment or diversion is necessary. | | Severe | The rate of accumulation is such that deicing/anti-icing equipment fails to reduce or control the hazard. Immediate diversion is necessary. | It is no longer unusual to find deicing and anti-icing equipment on a wide range of airplane sizes and types. Since the capability of this equipment varies, it becomes the pilot's primary responsibility to understand limitations which restrict the use of his airplane in icing conditions and the conditions which may exceed the systems capacity. Pilots and airplane owners must carefully review the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual in order to ascertain the required operable equipment needed for flight in icing conditions. In addition, they must ascertain from the same source the limits of approval or certification of their airplane for flight in icing conditions, and plan the flight accordingly, if icing conditions are known or forecast along the route. Every owner and pilot of an airplane should understand that it is not uncommon to find airplanes equipped with less than the full complement of available systems and equipment. For example, propellers and pitot tube may be protected, but the airplane may not have wing boots or tail boots. The reverse might be true. Windshield, pitot and airfoil surfaces might be protected, but the propellers might not be. Before undertaking any flight into areas where icing conditions might be expected, inspect the airplane and review the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual to be certain that you are supported by the full complement of required IFR and deicing/anti-icing equipment. Remember that regardless of its combination of deicing/antiicing equipment, any airplane not fully equipped and functional for IFR flight is not properly equipped for flight in icing conditions. An airplane which is not approved or certificated for flight in icing conditions, or which does not have all critical areas protected in the required manner by fully operational anti-icing equipment must not be exposed to icing encounters of any intensity. When icing is detected, the pilot of such an airplane must make an immediate diversion by flying out of the area of visible moisture or going to an altitude where icing is not encountered. Some models of Beech airplanes were approved for flight in certain limited icing conditions under the FAA's Bureau of Flight Standards Release No. 434. Under this release, properly equipped airplanes are approved for flight in light to 10-32 May, 1994 moderate icing conditions only. Refer to Sections 2 and 4 of the above document for icing limitations. These airplanes are not approved for extended flight in moderate icing conditions or flights in any severe icing conditions. Flight in these conditions must be avoided. Even airplanes fully equipped and certified for flight in the icing conditions described in Appendix C to FAR Part 25 must avoid flights into those conditions defined by the National Weather Service as "Severe". The National Weather Service definition of "Severe Icing" describes that conditions as: "the rate of accumulation is such that deicing/ anti-icing equipment fails to reduce or control the hazard." No airplane equipped with any combination of deicing/antiicing equipment can be expected to cope with such conditions. As competent pilots know, there appears to be no predictable
limits for the severest weather conditions. For essentially the same reasons that airplanes, however designed or equipped for IFR flight, cannot be flown safely into conditions such as thunderstorms, tornadoes, hurricanes or other phenomena likely to produce severe turbulence, airplanes equipped for flight in icing conditions cannot be expected to cope with "Severe" icing conditions as defined by the National Weather Service. The prudent pilot must remain alert to the possibility that icing conditions may become "severe" and that his equipment will not cope with them. At the first indication that such condition may have been encountered or may lie ahead, he should immediately react by selecting the most expeditious and safe course for diversion. Every pilot of a properly fully-equipped Beech airplane who ventures into icing conditions must maintain the minimum speed (KIAS) for operation in icing conditions, which is set forth in the Normal Procedures section, and in the Limitations section, of his Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. If a minimum speed for flight in icing conditions is not specified in the manual, the following minimum indicated airspeeds must be maintained: All Baron and Travel Air Models - 130 KIAS All other BEECHCRAFT twin-engine models - 140 KIAS The pilot must remain aware of the fact that if he allows his airspeed to deteriorate below this minimum speed, he will increase the angle of attack of his airplane to the point where ice may build up on the under side of the wings aft of the area protected by the boots. The fact or extent of ice build-up in unprotected areas will not be directly observable from the cockpit. Due to distortion of the wing airfoil, increased drag and reduced lift, stalling speeds will increase as ice accumulates on the airplane. For the same reasons, stall warning devices are not accurate and cannot be relied upon in icing conditions. Even though the pilot maintains the prescribed minimum speeds for operating in icing conditions, ice is still likely to build up on the unprotected areas (the fuselage and unprotected wing leading edge inboard of the engine nacelle). Under some atmospheric conditions, it may even build up aft of the boots despite the maintenance of the prescribed minimum speed. The effect of ice accumulation on any unprotected surface is aggravated by length of exposure to the icing conditions. Ice buildup on unprotected surfaces will increase drag, add weight, reduce lift, and generally, adversely affect the aerodynamic characteristics and performance of the airplane. It can progress to the point where the airplane is no longer capable of flying. Therefore, the pilot operating even a fully-equipped airplane in sustained icing conditions must remain sensitive to any indication, such as observed ice accumulation, loss of airspeed, the need for increased power, reduced rate of climb, or sluggish response, that ice is accumulating on unprotected surfaces and that continued flight in these conditions is extremely hazardous, regardless of the performance of the deicing/ anti-icing equipment. 10-34 May, 1994 Since flight in icing conditions is not an everyday occurrence, it is important that pilots maintain a proper proficiency and awareness of the operating procedures necessary for safe operation of the airplane and that the airplane is in a condition for safe operation. Ensure moisture drains in the airplane structure are maintained open as specified in the Aircraft Maintenance Manual, so that moisture will not collect and cause freezing in the control cable area. Also, control surface tab hinges should be maintained and lubricated as specified in the Aircraft Maintenance Manual. In icing conditions the autopilot should be disengaged at an altitude sufficient to permit the pilot to gain the feel of the airplane prior to landing. In no case should this be less than the minimum altitude specified in the Autopilot Airplane Flight Manual Supplement. Observe the procedures set forth in your Pilot's Operating Handbook and FAA Approved Airplane Flight Manual during operation in icing conditions. Activate your deice and anti-icing systems before entering an area of moisture where you are likely to go through a freezing level, to make sure all necessary equipment is operative. Rapid cycling of deice boots or cycling before at least onehalf inch (1/2") of ice has accumulated (measured in the chordwise direction or forward from the leading edge), may cause the ice to grow outside the contour of the inflated boots and prevent ice removal. For any owner or pilot whose use pattern for an airplane exposes it to icing encounters, the following references are required reading for safe flying: • The airplane's Pilot's Operating Handbook and FAA Approved Airplane Flight Manual, especially the sections on Normal Procedures, Emergency Procedures, Abnormal Procedures, Systems, and Safety Information. - FAA Advisory Circulars 91-51 Airplane Deice and Antiice Systems - FAA Advisory Circulars 135-9 Icing Limitations - Weather Flying by Robert N. Buck. Finally, the most important ingredients to safe flight in icing conditions - regardless of the airplane or the combination of deicing/anti-icing equipment - are a complete and current weather briefing, sound pilot judgement, close attention to the rate and type of ice accumulations, and the knowledge that "severe icing" as defined by the National Weather Service is beyond the capability of modern airplanes and immediate diversion must be made. It is the inexperienced or uneducated pilot who presses on "regardless", hoping that steadily worsening conditions will improve, only to find himself flying an airplane which has become so loaded with ice that he can no longer maintain altitude. At this point he has lost most, if not all, of his safety options, including perhaps a 180 degree turn to return along the course already traveled. The responsible and well-informed pilot recognizes the limitations of weather conditions, his airplane and its systems, and reacts promptly. ### WEATHER RADAR Airborne weather avoidance radar is, as its name implies, for avoiding severe weather--not for penetrating it. Whether to fly into an area of radar echoes depends on echo intensity and shape, spacing between the echoes, and the capabilities of you and your airplane. Remember that weather radar detects only precipitation drops. Therefore, the radar scope provides no assurance of avoiding turbulence. The radar scope also does not provide assurance of avoiding 10-36 May, 1994 instrument weather from clouds and fog. Your scope may be clear between intense echoes; this clear area does not necessarily mean you can fly between the storms and maintain visual sighting of them. Thunderstorms build and dissipate rapidly. Therefore, do not attempt to plan a course between echoes using ground based radar. The best use of ground radar information is to isolate general areas and coverage of echoes. You must avoid individual storms from in-flight observations either by visual sighting or by airborne radar. It is better to avoid the whole thunderstorm area than to detour around individual storms unless they are scattered. Remember that while hail always gives a radar echo, it may fall several miles from the nearest visible cloud and hazard-ous turbulence may extend to as much as 20 miles from the echo edge. The intensity of the radar echo from hail varies with the size and nature of the hailstone. A hailstone with a wet surface gives a strong radar return while a dry hailstone gives a relatively weak return. Avoid intense or extreme level echoes by at least 20 miles; that is, such echoes should be separated by at least 40 miles before you fly between them. With weaker echoes you can reduce the distance by which you avoid them. Above all, remember this: never regard any thunderstorm lightly. Even when radar observers report the echoes are of light intensity, avoiding thunderstorms is the best policy. The following are some do's and don'ts of thunderstorm avoidance: - Don't land or take off in the face of an approaching thunderstorm. A sudden gust front of low level turbulence could cause loss of control. - Don't attempt to fly under a thunderstorm even if you can see through to the other side. Turbulence and wind shear under the storm could be disastrous. - Don't fly without airborne radar into a cloud mass containing scattered embedded thunderstorms. Embedded thunderstorms usually can not be visually circumnavigated. - Don't trust visual appearance to be a reliable indicator of the turbulence inside a thunderstorm. - Do avoid by at least 20 miles any thunderstorm identified as severe or giving an intense radar echo. This is especially true under the anvil of a large cumulonimbus. - 6. Do circumnavigate the entire area if the area has 6/10 or greater thunderstorm coverage. - 7. Do remember that vivid and frequent lightning indicates the probability of a severe thunderstorm. - 8. Do regard as extremely hazardous any thunderstorm with tops 35,000 feet or higher, whether the top is visually sighted or determined by radar. If you cannot avoid penetrating a thunderstorm, the following are some do's BEFORE entering the storm: - Tighten your safety belt, put on your shoulder harness, and secure all loose objects. - 10. Plan and hold your course to take you through the storm in minimum time. - To avoid the most critical icing, establish a penetration altitude below the freezing level or above the level of -15°C. - 12. Verify that pitot heat is on and turn on carburetor heat or engine anti-ice. Icing can be rapid at any altitude and cause almost instantaneous power failure and/or loss of airspeed indication. 10-38 May, 1994 ### MOUNTAIN FLYING Pilots flying in mountainous areas should inform themselves of all aspects of mountain flying, including the effects of topographic features on weather conditions. Many good articles have been published,
and a synopsis of mountain flying operations is included in the FAA Airman's Information Manual, Part 1. Avoid flight at low altitudes over mountainous terrain, particularly near the lee slopes. If the wind velocity near the level of the ridge is in excess of 25 knots and approximately perpendicular to the ridge, mountain wave conditions are likely over and near the lee slopes. If the wind velocity at the level of the ridge exceeds 50 knots, a strong mountain wave is probable with extreme up and down drafts and severe turbulence. The worst turbulence will be encountered in and below the rotor zone, which is usually 8 to 10 miles downwind from the ridge. This zone is sometimes characterized by the presence of "roll clouds" if sufficient moisture is present; altocumulus standing lenticular clouds are also visible signs that a mountain wave exists, but their presence is likewise dependent on moisture. Mountain wave turbulence can, of course, occur in dry air and the absence of such clouds should not be taken as assurance that mountain wave turbulence will not be encountered. A mountain wave downdraft may exceed the climb capability of your airplane. Avoid mountain wave downdrafts. ### VFR - LOW CEILINGS If you are not instrument rated, do not attempt "VFR on Top" or "Special VFR" flight or clearances. Being caught above a solid cloud layer when an emergency descent is required (or at destination) is an extremely hazardous position for the VFR pilot. Accepting a clearance out of airport control zones with no minimum ceiling and one-mile visibility as permitted with "Special VFR" is a foolish practice for the VFR pilot. ## Section X Safety Information # Reechcraft Twin Engine (Piston) Avoid areas of low ceilings and restricted visibility unless you are instrument rated and proficient and have an instrument equipped airplane. Then proceed with caution and with planned alternates. ### VFR AT NIGHT When flying VFR at night, in addition to the altitude appropriate for the direction of flight, pilots should maintain a safe minimum altitude as dictated by terrain, obstacles such as TV towers, or communities in the area flown. This is especially true in mountainous terrain, where there is usually very little ground reference. Minimum clearance is 2,000 feet above the highest obstacle en route. Do not depend on your ability to see obstacles in time to miss them. Flight on dark nights over sparsely populated country can be the same as IFR, and must be avoided by inexperienced or non-IFR rated pilots. ### **VERTIGO - DISORIENTATION** Disorientation can occur in a variety of ways. During flight, inner ear balancing mechanisms are subjected to varied forces not normally experienced on the ground. This, combined with loss of outside visual reference, can cause vertigo. False interpretations (illusions) result, and may confuse the pilot's conception of the attitude and position of his airplane. Under VFR conditions, the visual sense, using the horizon as a reference, can override the illusions. Under low visibility conditions (night, fog, clouds, haze, etc.) the illusions predominate. Only through awareness of these illusions, and proficiency in instrument flight procedures, can an airplane be operated safely in a low visibility environment. Flying in fog, dense haze or dust, cloud banks, or very low visibility, with strobe lights or rotating beacons turned on can 10-40 May, 1994 contribute to vertigo. They should be turned off in these conditions, particularly at night. All pilot's should check the weather and use good judgment in planning flights. The VFR pilot should use extra caution in avoiding low visibility conditions. Motion sickness often precedes or accompanies disorientation and may further jeopardize the flight. Disorientation in low visibility conditions is not limited to VFR pilots. Although IFR pilots are trained to look at their instruments to gain an artificial visual reference as a replacement for the loss of a visual horizon, they do not always do so. This can happen when the pilot's physical condition will not permit him to concentrate on his instruments; when the pilot is not proficient in flying instrument conditions in the airplane he is flying; or, when the pilot's work load of flying by reference to his instruments is augmented by such factors as turbulence. Even an instrument rated pilot encountering instrument conditions, intentional or unintentional, should ask himself whether or not he is sufficiently alert and proficient in the airplane he is flying, to fly under low visibility conditions and in the turbulence anticipated or encountered. If any doubt exists, the flight should not be made or it should be discontinued as soon as possible. The result of vertigo is loss of control of the airplane. If the loss of control is sustained, it will result in an excessive speed accident. Excessive speed accidents occur in one of two manners, either as an inflight airframe separation or as a high speed ground impact; and they are fatal accidents in either case. All airplanes are subject to this form of accident. For years, Beech Pilot's Operating Handbooks and FAA Approved Airplane Flight Manuals have contained instructions that the landing gear should be extended in any circumstance in which the pilot encounters IFR conditions which approach the limits of his capability or his ratings. Lowering the gear in IFR conditions or flight into heavy or severe turbulence, tends to stabilize the airplane, assists in maintaining proper airspeed, and will substantially reduce the possibility of reaching excessive airspeeds with catastrophic consequences, even where loss of control is experienced. Excessive speed accidents occur at airspeeds greatly in excess of two operating limitations which are specified in the manuals: Maximum maneuvering speed and the "red line" or maximum operating speed. Such speed limits are set to protect the structure of an airplane. For example, flight controls are designed to be used to their fullest extent only below the airplane's maximum maneuvering speed. As a result, the control surfaces should never be suddenly or fully deflected above maximum maneuvering speed. Turbulence penetration should not be performed above that speed. The accidents we are discussing here occur at airspeeds greatly in excess of these limitations. No airplane should ever be flown beyond its FAA approved operating limitations. ## FLIGHT OF MULTI-ENGINE AIRPLANES WITH ONE ENGINE INOPERATIVE The major difference between flying a twin-engine and single-engine airplane is knowing how to manage the flight if one engine loses power for any reason. Safe flight with one engine inoperative requires an understanding of the basic aerodynamics involved - as well as proficiency in engine out procedures. Loss of power from one engine affects both climb performance and controllability of twin-engine airplanes. Climb performance depends on an excess of power over that required for level flight. Loss of power from one engine obviously represents a 50% loss of horsepower but, in virtually all twin-engine airplanes, climb performance is reduced by at least 80%. A study of the charts in your Pilot's Operating Handbook and FAA Approved Airplane Flight Manual will confirm this fact. Single-engine climb performance depends on four factors: Airspeed too little, or too much, will decrease climb performance Drag gear, flaps, cowl flaps, prop, and speed Power amount available in excess of that needed for level flight Weight passengers, baggage, and fuel load greatly affect climb performance Loss of power on one engine creates yaw due to asymmetric thrust. Yaw forces must be balanced with the rudder. Loss of power on one engine also reduces airflow over the wing causing a roll toward the "dead" engine which must be balanced with the aileron. The net result of these forces cause the airplane to sideslip slightly toward the dead engine. This sideslip may be balanced by banking slightly (up to 5°) into the operating engine. ## CAUTION In the event of an engine failure with the main tanks less than one-quarter full, corrective action must be taken immediately to prevent large yaw angles from developing and causing stoppage of the remaining engine. Airspeed is the key to safe single engine operations. For most twin-engine airplanes there is: | Section | n X | |---------|-------------| | Safety | Information | # Rechcraft Twin Engine (Piston) | Symbol | Description | |------------------|--| | V _{MCA} | Airspeed below which directional con-
trol cannot be maintained | | V _{SSE} | Airspeed below which an intentional engine cut should never be made | | V _{YSE} | Airspeed that will give the best single engine rate-of-climb (or the slowest loss of altitude) | | V _{XSE} | Airspeed that will give the steepest angle-of-climb with one engine out | ### AIR MINIMUM CONTROL SPEED (V_{MCA}) V_{MCA} is designated by the red radial on the airspeed indicator and indicates the minimum control speed, airborne at sea level. V_{MCA} is determined by FAA regulations as the minimum airspeed at which it is possible to recover directional control of the airplane within 20 degrees heading change, and thereafter maintain straight flight, with not more than 5 degrees of bank if one engine fails suddenly with: - · Takeoff power on both engines - · Rearmost allowable center of gravity - · Flaps in takeoff position - Propeller windmilling in takeoff pitch configuration However, sudden engine failures rarely occur with all factors listed above, and therefore, the actual V_{MCA} in any particular situation may be a little slower than the red radial on the airspeed indicator. Most airplanes with an inoperative engine will not maintain level flight at maximum power at speeds at or near V_{MCA}. Consequently, it is not advisable to fly at speeds approaching V_{MCA}, except in training
situations or during flight tests. Adhering to the practice of never flying at or below the published V_{MCA} speed for your airplane does not eliminate loss of directional control as a problem in the 10-44 May, 1994 event of an engine failure. The pilot must be prepared to use assertive control input to maintain airplane control following an engine failure. ## INTENTIONAL ONE-ENGINE INOPERATIVE SPEED (V_{SSE}) VSSE is specified by the airplane manufacturer and is the minimum speed at which to perform intentional engine cuts. Use of VSSE is intended to reduce the accident potential from loss of control after engine cuts at or near minimum control speed. VMCA demonstrations are necessary in training but should only be made at safe altitude above the terrain and with power reduction on one engine made at or above VSSE. ## ONE-ENGINE-INOPERATIVE BEST RATE-OF-CLIMB SPEED (V_{YSE}) V_{YSE} is designated by the blue radial on the airspeed indicator. V_{YSE} delivers the greatest gain in altitude in the shortest possible time, and is based on the following criteria: - Critical engine inoperative, and its propeller in the minimum drag position. - Operating engine set at not more than the maximum continuous power. - · Landing gear retracted. - Wing flaps up. - Cowl flaps as required for engine cooling. - Airplanes flown at recommended bank angle (up to 5° into operating engine). Drag caused by a windmilling propeller, extending landing gear, or flaps in the landing position, will severely degrade or destroy single engine climb performance. Since climb performance varies widely with type of airplane, weight, temperature, altitude, and airplane configuration, the climb gradient (altitude gain or loss per mile) may be marginal - or even negative - under some conditions. Study the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual for your airplane and know what performance to expect with one engine out. ## ONE-ENGINE-INOPERATIVE BEST ANGLE-OF-CLIMB SPEED (V_{XSE}) V_{XSE} is used only to clear obstructions during initial climbout as it gives the greatest altitude gain per unit of horizontal distance. It provides less engine cooling and requires more rudder control input than V_{YSE}. ### SINGLE ENGINE SERVICE CEILING The single engine service ceiling is the maximum altitude at which an airplane will climb at a rate of at least 50 feet per minute in smooth air, with one engine inoperative. The single engine service ceiling chart should be used during flight planning to determine whether the airplane, as loaded, can maintain the Minimum En Route Altitude (MEA) if IFR, or terrain clearance if VFR, following an engine failure. ### BASIC SINGLE ENGINE PROCEDURES Know and follow, to the letter, the single-engine emergency procedures specified in your Pilot's Operating Handbook and FAA Approved Airplane Flight Manual for your specific make and model airplane. However, the basic fundamentals of all the procedures are as follows: - 1. Maintain airplane control and airspeed at all times. THIS IS CARDINAL RULE NUMBER ONE. - 2. Usually, apply maximum power to the operating engine. 10-46 May, 1994 However, if the engine failure occurs at a speed below V_{MCA}, during cruise or in a steep turn, you may elect to use only enough power to maintain a safe speed and altitude. If the failure occurs on final approach, use power only as necessary to complete the landing. - Reduce drag to an absolute minimum. - 4. Secure the failed engine and related sub-systems. The first three steps should be done promptly and from memory. The check list should then be consulted to be sure that the inoperative engine is secured properly and that the appropriate switches are placed in the correct position. The airplane must be banked about 5° into the operating engine, with the "slip/skid" ball slightly out of center toward the operating engine, to achieve rated performance. Another note of caution: Be sure to identify the dead engine, positively, before securing it. Remember: First identify the suspected engine (i.e., "Dead foot means dead engine"), second, verify with cautious throttle movement, then secure. ### ENGINE FAILURE ON TAKEOFF If an engine fails before attaining lift-off speed or below V_{MCA} , the only proper action is to discontinue the takeoff. If the engine fails after lift-off with the landing gear still down, the takeoff should still be discontinued if touchdown and roll-out on the remaining runway is still possible. If you do find yourself in a position of not being able to climb, it is much better to reduce the power on the good engine and land straight ahead than try to force a climb and lose control. Your Pilot's Operating Handbook and FAA Approved Airplane Flight Manual contains charts that are used in calculating the runway length required to stop if the engine fails before reaching lift-off speed and also has charts showing the single-engine performance after lift-off. Study your charts carefully. No airplane is capable of climbing out on one engine under all weight, pressure altitude, and temperature conditions. Know, before you take the actual runway, whether you can maintain control and climb out if you lose an engine while the gear is still down. It may be necessary to off-load some weight, or wait for more favorable temperatures. ### WHEN TO FLY VX, VY, VXSE AND VYSE During normal two-engine operations, always fly V_Y (V_X if necessary for obstacle clearance) on initial climb out. Then, accelerate to your cruise climb airspeed, which may be V_Y plus 10 or 15 knots after you have obtained a safe altitude. Use of cruise climb airspeed will give you better engine cooling, increased inflight visibility and better fuel economy. However, at first indication of an engine failure during climb out, or while on approach, establish V_{YSE} or V_{XSE} , whichever is appropriate. (Consult your Pilot's Operating Handbook and FAA Approved Airplane Flight Manual for specifics.) ### STALLS, SLOW FLIGHT AND TRAINING The stall warning system must be kept operational at all times and must not be deactivated by interruption of circuits, circuit breakers, or fuses. Compliance with this requirement is especially important in all high performance multi-engine airplanes during engine-out practice or stall demonstrations, because the stall speed is critical in all low speed operations of high-performance airplanes. Training should be accomplished under the supervision of a qualified instructor-pilot, with careful reference to the applicable sections of the FAA Practical Test Standards and FAA Pilot Transition Courses for Complex Single Engine and 10-48 May, 1994 Light Twin Engine Airplanes (AC61-9B). In particular, observe carefully the warnings in the Practical Test Standards. The single-engine stall speed of a twin-engine airplane is generally slightly below the power off (engines idle) stall speed, for a given weight condition. Single-engine stalls should not be conducted in multi-engine airplanes by other than qualified engineering test pilots. Engine-out minimum control speed generally decreases with altitude, while the single engine stall speed remains approximately constant for normally aspirated engines. No such demonstration should be attempted when the altitude and temperature are such that the engine-out minimum control speed is known, or discovered to be, close to the stalling speed. Loss of directional or lateral control, just as a stall occurs, is potentially hazardous. V_{SSE}, the airspeed below which an engine should not be intentionally rendered inoperative for practice purposes, was established because of the apparent practice of some pilots, instructors, and examiners, of intentionally rendering an engine inoperative at a time when the airplane is being operated at a speed close to, or below the power-idle stall speed. Unless the pilot takes immediate and proper corrective action under such circumstances, it is possible to enter an inadvertent spin. It is recognized that flight below V_{SSE} with one engine inoperative, or simulated inoperative, may be required for conditions such as practice demonstration of V_{MCA} for multiengine pilot certification. Refer to the procedure set forth in the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual for your airplane. This procedure calls for simulating one engine inoperative by reducing the power level (throttle) on one engine to idle while operating at an airspeed above VSSE. Power on the other engine is set at maximum, then airspeed is reduced at approximately one knot per second until either V_{MCA} or stall warning is obtained. During this transition, rudder should be used to maintain directional control, and ailerons should be used to maintain a 5° bank toward the operative engine. At the first sign of either V_{MCA} or stall warning (which may be evidenced by inability to maintain longitudinal, lateral or directional control, aerodynamic stall buffet, or stall warning horn sound), recovery must be initiated immediately by reducing power to idle on operative engine and lowering the nose to regain V_{SSE}. Resume normal flight. This entire procedure should be used at a safe altitude of at least 5,000 feet above the ground in clear air only. If stall warning is detected prior to the first sign of V_{MCA} , an engine-out minimum control speed demonstration cannot be 10-50 May, 1994 accomplished under the existing gross weight conditions and should not be attempted. ### **SPINS** A major cause of fatal accidents in general aviation airplanes is a spin. Stall demonstrations and practice are a means for a pilot to acquire the skills to recognize when a stall is about to occur and to recover as soon as the first signs of a stall are evident. If a stall does not occur - A spin cannot occur. It is important to remember however, that a stall can occur in any flight attitude, at any airspeed, if controls are misused. Unless your airplane has been
specifically certificated in the aerobatic category and specifically tested for spin recovery characteristics, it is placarded against intentional spins. The pilot of an airplane placarded against intentional spins should assume that the airplane may become uncontrollable in a spin, since its performance characteristics beyond certain limits specified in the FAA regulations may not have been tested and are unknown. This is why airplanes are placarded against intentional spins, and this is why stall avoidance is your protection against an inadvertent spin. Pilots are taught that intentional spins are entered by deliberately inducing a yawing moment with the controls as the airplane is stalled. Inadvertent spins result from the same combination - stall plus yaw. That is why it is important to use coordinated controls and to recover at the first indication of a stall when practicing stalls. In any twin engine airplane, fundamental aerodynamics dictate that if the airplane is allowed to become fully stalled while one engine is providing lift-producing thrust, the yawing moment which can induce a spin will be present. Consequently, it is important to immediately reduce power on the operating engine, lower the nose to reduce the angle of attack, and increase the airspeed to recover from the stall. In any twin engine airplane, if application of stall recovery controls is delayed, a rapid rolling and yawing motion may develop, even against full aileron and rudder, resulting in the airplane becoming inverted during the onset of a spinning motion. Once the airplane has been permitted to progress beyond the stall and is allowed to reach the rapid rolling and yawing condition, the pilot must then immediately initiate the generally accepted spin recovery procedure for multi-engine airplanes, which is as follows: Immediately move the control column full forward, apply full rudder opposite to the direction of the spin and reduce power on both engines to idle. These three actions should be done as near simultaneously as possible; then continue to hold this control position until rotation stops, then neutralize all controls and execute a smooth pullout. Ailerons should be neutral during recovery. THE LONGER THE PILOT DELAYS BEFORE TAKING CORRECTIVE ACTION, THE MORE DIFFICULT RECOVERY WILL BECOME. Always remember that extra alertness and pilot techniques are required for slow flight maneuvers, including the practice or demonstration of stalls or V_{MCA}. In addition to the foregoing mandatory procedure, always: - Be certain that the center of gravity of the airplane is as far forward as possible. Forward C.G. aids stall recovery, spin avoidance and spin recovery. An aft C.G. can create a tendency for a spin to stabilize, which delays recovery. - Whenever a student pilot will be required to practice slow flight or single-engine maneuvers, be certain that the qualified instructor pilot has a full set of operable controls available. FAA regulations prohibit flight instruction without full dual controls. - Conduct any maneuvers which could possibly result in a spin at altitudes in excess of five thousand (5,000) feet above ground level in clear air only. 10-52 May, 1994 - Remember that an airplane, at or near traffic pattern and approach altitudes, cannot recover from a spin, or perhaps even a stall, before impact with the ground. For twin engine airplanes, when descending to traffic altitude and during pattern entry and all other flight operations, maintain speed no lower than V_{SSE}. On final final approach maintain at least the airspeed shown in the flight manual. Should a go-around be required, do not apply more power than necessary until the airplane has accelerated to V_{SSE}. Recognize that under some conditions of weight, density altitude, and airplane configuration, a twin engine airplane cannot climb or accelerate on a single engine. Hence a single engine go-around is impossible and the airplane is committed to a landing. Plan your approach accordingly. - Remember that if an airplane flown under instrument conditions is permitted to stall or enter a spin, the pilot, without reference to the horizon, is certain to become disoriented. He may be unable to recognize a stall, spin entry, or the spin condition and he may be unable to determine even the direction of the rotation. - Finally, never forget that stall avoidance is your best protection against an inadvertent spin. MAINTAIN YOUR AIRSPEED. ### DESCENT In twin engine piston-powered airplanes, supercharged or normally aspirated, it is necessary to avoid prolonged descents with low power, as this produces two problems: (1) excessively cool cylinder head temperatures which cause premature engine wear, and (2) excessively rich mixtures due to idle enrichment (and altitude) which causes soot and lead deposits on the spark plugs (fouling). The second of these is the more serious consideration; the engine may not respond to the throttle when it is desired to discontinue the descent. Both problems are amenable to one solution: maintain adequate power to keep cylinder head temperatures in the "green" range during descent, and lean to best power mixture (that is, progressively enrich the mixture from cruise only slightly as altitude decreases). This procedure will lengthen the descent, of course, and requires some advance planning. If it is necessary to make a prolonged descent at or near idle, as in practicing forced landings, at least avoid the problem of fouled spark plugs by frequently advancing the throttle until the engine runs smoothly, and maintain an appropriate mixture setting with altitude. (Refer to pre-landing check list.) #### **VORTICES - WAKE TURBULENCE** Every airplane generates wakes of turbulence while in flight. Part of this is from the propeller or jet engine, and part from the wing tip vortices. The larger and heavier the airplane, the more pronounced and turbulent the wakes will be. Wing tip vortices from large, heavy airplanes are very severe at close range, degenerating with time, wind and distance. These are rolling in nature, from each wing tip. In tests, vortex velocities of 133 knots have been recorded. Encountering the rolling effect of wing tip vortices within two minutes after passage of large airplanes is most hazardous to light airplanes. This roll effect can exceed the maximum counterroll obtainable in a light airplane. The turbulent areas may remain for as long as three minutes or more, depending on wind conditions, and may extend several miles behind the airplane. Plan to fly slightly above and to the windward side of other airplanes. Because of the wide variety of conditions that can be encountered, there is no set rule to follow to avoid wake turbulence in all situations. However, the Airman's Information Manual, and to a greater extent Advisory Circular 90-23, Aircraft Wake Turbulence, provide a thorough discussion of the factors you should be aware of when wake turbulence may be encountered. 10-54 May, 1994 #### TAKEOFF AND LANDING CONDITIONS When taking off on runways covered with water or freezing slush, the landing gear should remain extended for approximately ten seconds longer than normal, allowing the wheels to spin and dissipate the freezing moisture. The landing gear should then be cycled up, then down, wait approximately five seconds and then retracted again. Caution must be exercised to insure that the entire operation is performed below Maximum Landing Gear Operating Airspeed. Use caution when landing on runways that are covered by water or slush which cause hydroplaning (aquaplaning), a phenomenon that renders braking and steering ineffective because of the lack of sufficient surface friction. Snow and ice covered runways are also hazardous. The pilot should also be alert to the possibility of the brakes freezing. Use caution when taking off or landing during gusty wind conditions. Also be aware of the special wind conditions caused by buildings or other obstructions located near the runway. ### MEDICAL FACTS FOR PILOTS #### **GENERAL** When the pilot enters the airplane, he becomes an integral part of the man-machine system. He is just as essential to a successful flight as the control surfaces. To ignore the pilot in preflight planning would be as senseless as failing to inspect the integrity of the control surfaces or any other vital part of the machine. The pilot has the responsibility for determining his reliability prior to entering the airplane for flight. When piloting an airplane, an individual should be free of conditions which are harmful to alertness, ability to make correct decisions, and rapid reaction time. May, 1994 10-55 #### **FATIGUE** Fatigue generally slows reaction time and causes errors due to inattention. In addition to the most common cause of fatigue; insufficient rest and loss of sleep, the pressures of business, financial worries, and family problems can be important contributing factors. If you are tired, don't fly. #### **HYPOXIA** Hypoxia, in simple terms, is a lack of sufficient oxygen to keep the brain and other body tissues functioning properly. There is a wide individual variation in susceptibility to hypoxia. In addition to progressively insufficient oxygen at higher altitudes, anything interfering with the blood's ability to carry oxygen can contribute to hypoxia (anemias, carbon monoxide, and certain drugs). Also, alcohol and various drugs decrease the brain's tolerance to hypoxia. Your body has no built-in alarm system to let you know when you are not getting enough oxygen. It is impossible to predict when or where hypoxia will occur during a given flight, or how it will manifest itself. Some of the common symptoms of hypoxia are increased breathing rate, a light-headed or dizzy sensation, tingling or warm sensation, sweating, reduced visual field, sleepiness, blue coloring of skin, fingernails, and lips, and behavior changes. A particularly dangerous feature of hypoxia is an increased
sense of well-being, called euphoria. It obscures a person's ability and desire to be critical of himself, slows reaction time, and impairs thinking ability. Consequently, a hypoxic individual commonly believes things are getting progressively better while he nears total collapse. The symptoms are slow but progressive, insidious in onset, and are most marked at altitudes starting above ten thousand feet. Night vision, however, can be impaired starting at an altitude of 5,000 feet. Persons who have recently overindulged in alcohol, who are moderate to heavy smokers, or 10-56 May, 1994 who take certain drugs, may be more susceptible to hypoxia. Susceptibility may also vary in the same individual from day to day or even morning to evening. Use oxygen on flights above 10,000 feet and at any time when symptoms appear. Depending upon altitude, a hypoxic individual has a limited time to make decisions and perform useful acts, even though he may remain conscious for a longer period. If pressurization equipment fails at certain altitudes the pilot and passengers have only a certain amount of time to get an oxygen mask on before they exceed their time of useful consciousness. The time of useful consciousness is approximately 3-5 minutes at 25,000 feet of altitude for the average individual and diminishes markedly as altitude increases. At 30,000 feet altitude, for example, the time of useful consciousness is approximately 1-2 minutes. Therefore, in the event of depressurization, oxygen masks should be used immediately. Should symptoms occur that cannot definitely be identified as either hypoxia or hyperventilation, try three or four deep breaths of oxygen. The symptoms should improve markedly if the condition was hypoxia (recovery from hypoxia is rapid). Pilots who fly to altitudes that require or may require the use of supplemental oxygen should be thoroughly familiar with the operation of the airplane oxygen systems. A preflight inspection of the system should be performed, including proper fit of the mask. The passengers should be briefed on the proper use of their oxygen system before flight. Pilots who wear beards should be careful to ensure that their beard is carefully trimmed so that it will not interfere with proper sealing of the oxygen masks. If you wear a beard or moustache, test the fit of your oxygen mask on the ground for proper sealing. Studies conducted by the military and oxygen equipment manufacturers conclude that oxygen masks do not seal over beards or heavy facial hair. May, 1994 10-57 ## Section X Safety Information # Recchcraft Twin Engine (Piston) Federal Aviation Regulations related to the use of supplemental oxygen by flight crew and passengers must be adhered to if flight to higher altitudes is to be accomplished safely. Passengers with significant circulatory or lung disease may need to use supplemental oxygen at lower altitudes than specified by these regulations. Pilots of pressurized airplanes should receive physiological training with emphasis on hypoxia and the use of oxygen and oxygen systems. Pilots of airplanes with pressure demand oxygen systems should undergo training, experience altitude chamber decompression, and be familiar with pressure breathing before flying at high altitude. This training is available throughout the United States at nominal cost. Information regarding this training may be obtained by request from the Chief, Civil Aeromedical Institute, Attention: Aeromedical Education Branch, AAC-140, Mike Monroney Aeronautical Center, P. O. Box 25082, Oklahoma City, Oklahoma 73125 ### **HYPERVENTILATION** Hyperventilation, or overbreathing, is a disturbance of respiration that may occur in individuals as a result of emotional tension or anxiety. Under conditions of emotional stress, fright, or pain, breathing rate may increase, causing increased lung ventilation, although the carbon dioxide output of the body cells does not increase. As a result, carbon dioxide is "washed out" of the blood. The most common symptoms of hyperventilation are: dizziness, nausea, sleepiness, and finally, unconsciousness. If the symptoms persist discontinue use of oxygen and consciously slow your breathing rate until symptoms clear, and then resume normal breathing rate. Normal breathing can be aided by talking aloud. 10-58 May, 1994 #### ALCOHOL Common sense and scientific evidence dictate that you must not fly as a crew member while under the influence of alcohol. Alcohol, even in small amounts, produces (among other things): - A dulling of critical judgement. - A decreased sense of responsibility. - Diminished skill reactions and coordination. - Decreased speed and strength of muscular reflexes (even after one ounce of alcohol). - Decreases in efficiency of eye movements during reading (after one ounce of alcohol). - Increased frequency of errors (after one ounce of alcohol). - Constriction of visual fields. - Decreased ability to see under dim illuminations. - · Loss of efficiency of sense of touch. - · Decrease of memory and reasoning ability. - Increased susceptibility to fatigue and decreased attention span. - Decreased relevance of response. - Increased self confidence with decreased insight into immediate capabilities. Tests have shown that pilots commit major errors of judgment and procedure at blood alcohol levels substantially less than the minimum legal levels of intoxication for most states. These tests further show a continuation of impairment from alcohol up to as many as 14 hours after consumption, with no appreciable diminution of impairment. The body metabolizes ingested alcohol at a rate of about one-third of an ounce per hour. Even after the body completely May, 1994 10-59 destroys a moderate amount of alcohol, a pilot can still be severely impaired for many hours by hangover. The effects of alcohol on the body are magnified at altitudes, as 2 oz. of alcohol at 18,000 feet produce the same adverse effects as 6 oz. at sea level. Federal Aviation Regulations have been amended to reflect the FAA's growing concern with the effects of alcohol impairment. FAR 91 states: ### "Alcohol or drugs. - (a) No person may act or attempt to act as a crewmember of a civil aircraft - - (1) Within 8 hours after the consumption of any alcoholic beverage; - (2) While under the influence of alcohol; - (3) While using any drug that affects the person's faculties in any way contrary to safety; or - (4) While having .04 percent by weight or more alcohol in the blood. - (b) Except in an emergency, no pilot of a civil aircraft may allow a person who appears to be intoxicated or who demonstrates by manner or physical indications that the individual is under the influence of drugs (except a medical patient under proper care) to be carried in that aircraft." Because of the slow destruction of alcohol by the body, a pilot may still be under influence eight hours after drinking a moderate amount of alcohol. Therefore, an excellent rule is to allow at least 12 to 24 hours between "bottle and throttle," depending on the amount of alcoholic beverage consumed. #### DRUGS Self-medication or taking medicine in any form when you are flying can be extremely hazardous. Even simple home or 10-60 May, 1994 over-the-counter remedies and drugs such as aspirin, antihistamines, cold tablets, cough mixtures, laxatives, tranquilizers, and appetite suppressors, may seriously impair the judgment and coordination needed while flying. The safest rule is to take no medicine before or while flying, except after consultation with your Aviation Medical Examiner. #### SCUBA DIVING Flying shortly after any prolonged scuba diving could be dangerous. Under the increased pressure of the water, excess nitrogen is absorbed into your system. If sufficient time has not elapsed prior to takeoff for your system to rid itself of this excess gas, you may experience the bends at altitudes even under 10,000 feet, where most light planes fly. ## CARBON MONOXIDE AND NIGHT VISION The presence of carbon monoxide results in hypoxia which will affect night vision in the same manner and extent as hypoxia from high altitudes. Even small levels of carbon monoxide have the same effect as an altitude increase of 8,000 to 10,000 feet. Smoking several cigarettes can result in a carbon monoxide saturation sufficient to affect visual sensitivity equal to an increase of 8,000 feet altitude. #### DECOMPRESSION SICKNESS Pilots flying unpressurized airplanes at altitudes in excess of 10,000 feet should be alert for the symptoms of 'decompression sickness'. This phenomenon, while rare, can impair the pilot's ability to perform and in extreme cases, can result in the victim being rendered unconscious. Decompression sickness, also known as dysbarism and aviator's "bends", is caused by nitrogen bubble formation in body tissue as the ambient air pressure is reduced by climbing to higher altitudes. The symptoms are pain in the joints, abdominal cramps, burning sensations in the skin, visual impairment May, 1994 10-61 ## Section X Safety Information ## Rechcraft Twin Engine (Piston) and numbness. Some of these symptoms are similar to hypoxia. The only known remedy for decompression sickness is recompression, which can only be accomplished in an unpressurized airplane by descending. The pilot should immediately descend if it is suspected that this condition exists, since the effects will only worsen with continued exposure to the reduced pressure environment at altitude and could result, if uncorrected, in complete incapacitation. The possibility of decompression sickness can be greatly reduced by pre-breathing oxygen prior to flight and by commencing oxygen breathing well below the altitudes where it is legally mandatory. 10-62 May, 1994 ## A FINAL WORD Airplanes are truly remarkable machines. They enable us to shrink distance and time, and to expand our business and personal horizons in ways that, not too many years ago, were virtually inconceivable. For many
businesses, the general aviation airplane has become the indispensable tool of efficiency. Advances in the mechanical reliability of the airplanes we fly have been equally impressive, as attested by the steadily declining statistics of accidents attributed to mechanical causes, at a time when the airframe, systems and power plants have grown infinitely more complex. The explosion in capability of avionics systems is even more remarkable. Radar, RNAV, LORAN, sophisticated autopilots and other devices which, just a few years ago, were too large and prohibitively expensive for general aviation size airplanes, are becoming increasingly commonplace in even the smallest airplanes. It is thus that this Safety Information is directed to the pilot, for it is in the area of the skill and proficiency of you, the pilot, that the greatest gains in safe flying are to be made over the years to come. Intimate knowledge of your airplane, its capabilities and its limitations, and disciplined adherence to the procedures for your airplane's operation, will enable you to transform potential tragedy into an interesting hangar story when - as it inevitably will - the abnormal situation is presented. Know your airplane's limitations, and your own. Never exceed either. Safe flying, BEECH AIRCRAFT CORPORATION May, 1994 10-63 Recchcraft Twin Engine (Piston) # THIS PAGE INTENTIONALLY LEFT BLANK 10-64 May, 1994 ## **SECTION VIII** # HANDLING, SERVICING AND MAINTENANCE ### TABLE OF CONTENTS | SUBJECT | AGE | |---|------------| | Introduction | 8-5
8-6 | | Airplane Inspection Periods Preventative Maintenance That May Be | 8-7 | | Accomplished By A Certificated Pilot | 8-7 | | Alterations or Repairs to Airplane | 8-7 | | Ground Handling | 8-8 | | Towing | 8-8 | | Parking | 8-9 | | Tie-Down | 8-9 | | Main Wheel Jacking 8 | 3-10 | | | 3-10 | | Storage 8 | 3-10 | | | 3-10 | | | 3-10 | | Engine Preparation For Storage 8 | 3-11 | | - | 3-11 | | | 3-12 | | | 3-12 | | • | 3-12 | | | 3-12 | | | -12 | | | -12 | ## BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 ## TABLE OF CONTENTS (Continued) | SUBJECT | PAGE | |---------------------------------------|--------------| | External Power | 0.12 | | External Power | 8-13
8-14 | | Checking Electrical Equipment | | | Servicing | 8-15 | | Fuel System | 8-15 | | Fuel Tanks | 8-15 | | Fuel Drains | 8-15 | | Fuel Strainers | 8-16 | | Oil System | 8-16 | | Battery | 8-17 | | Tires | 8-18 | | Shock Struts | 8-18 | | Shimmy Damper | 8-20 | | Brakes | 8-21 | | Induction Air Filter | 8-21 | | To Remove and Clean the Filter | 8-22 | | Propellers | 8-22 | | Propeller Anti-ice Tank (Fluid) | 8-23 | | Oxygen System | 8-23 | | Oxygen Cylinder Retesting | 8-24 | | Minor Maintenance | 8-24 | | Rubber Seals | 8-24 | | Heating and Ventilating System | 8-25 | | Magnetos | 8-25 | | Cleaning | 8-26 | | Exterior Painted Surfaces | 8-26 | | Windshield and Windows | 8-29 | | Surface Deice Boots | | | Engine | | | Interior | | | Lubrication Points 8-32 - | | | | | | Recommended Servicing Schedule 8-38 - | | | Consumable Materials | | | Approved Engine Oils | 8-48 | 8-2 June 1982 ## Section VIII Handling, Serv - Maint ## TABLE OF CONTENTS (Continued) | SUBJECT | PAGE | |--------------------------------------|------| | Bulb Replacement Guide | 8-50 | | Overhaul or Replacement Schedule | 8-51 | | Special Conditions Cautionary Notice | 8-51 | | Landing Gear | 8-52 | | Power Plant | 8-52 | | Fuel System | 8-53 | | Instruments | 8-54 | | Electrical System | 8-54 | | Utility Systems | 8-55 | | Flaps and Flight Controls | 8-56 | | Miscellaneous | 8-56 | ## INTENTIONALLY LEFT BLANK 8-4 June 1982 #### INTRODUCTION The purpose of this section is to outline the requirements for maintaining the airplane in a condition equal to that of its original manufacture. This information sets the time frequency intervals at which the airplane should be taken to a BEECHCRAFT Aero or Aviation Center or International Distributor or Dealer for periodic servicing or preventive maintenance. The Federal Aviation Regulations place the responsibility for the maintenance of this airplane on the owner and operator of the airplane who must ensure that all maintenance is done by qualified mechanics in conformity with all airworthiness requirements established for this airplane. All limits, procedures, safety practices, time limits, servicing and maintenance requirements contained in this handbook are considered mandatory. Authorized BEECHCRAFT Aero or Aviation Centers or International Distributors or Dealers will have recommended modification, service, and operating procedures issued by both FAA and Beech Aircraft Corporation, designed to get maximum utility and safety from the airplane. If there is a question concerning the care of the airplane, it is important to include the airplane serial number in any correspondence. The serial number appears on the model designation placard attached to the underside of the fuselage just forward of the tiedown. #### **PUBLICATIONS** The following publications are available through BEECHCRAFT Aero or Aviation Centers and International Distributors or Dealers: - 1. Shop Manual - 3. Service Instructions - 2. Parts Catalog - 4. Various Inspection Forms #### NOTICE The following information may be provided to the holder of this manual automatically: - Original issues and revisions of Class I and II Service Instructions. - Original issues and revisions of FAA Approved Airplane Flight Manual Supplements. - Reissues and Revisions of FAA Approved Airplane Flight Manuals, Flight Handbooks, Owner's Manuals, Pilot's Operating Manuals and Pilot's Operating Handbooks. This service is free and will be provided only to holders of this handbook who are listed on the FAA Aircraft Registration Branch List or the BEECHCRAFT International Owners Notification Service List, and then only if you are listed by airplane serial number for the model for which this handbook is applicable. For detailed information on how to obtain "Revision Service" applicable to this handbook or other BEECHCRAFT Service Publications consult a BEECHCRAFT Aero or Aviation Center or International Distributor or Dealer or refer to the latest revision of BEECHCRAFT Service Instructions No. 0250-010. 8-6 June 1982 #### AIRPLANE INSPECTION PERIODS - 1. FAA Required 100 Hour and/or Annual Inspections. - 2. BEECHCRAFT Recommended Inspection Guide. - 3. Continuous Care Inspection Guide. - See "Recommended Servicing Schedule" and Overhaul or Replacement Guide" for further inspection schedules. - 5. Check the wing bolts for proper torque at the first 100 hour inspection and at the first 100 hour inspection after each reinstallation of the wing attach bolts. ## PREVENTATIVE MAINTENANCE THAT MAY BE ACCOMPLISHED BY A CERTIFICATED PILOT A certificated pilot may perform limited maintenance. Refer to FAR Part 43 for the items which may be accomplished. To ensure proper procedures are followed, obtain a BEECHCRAFT Shop Manual for performing preventative maintenance. 2. All other maintenance must be performed by licensed personnel. #### NOTE Pilots operating airplanes of other than U. S. registry should refer to the regulations of the country of certification for information on preventative maintenance that may be performed by pilots. #### ALTERATIONS OR REPAIRS TO AIRPLANE The FAA should be contacted prior to any alterations on the airplane to ensure the airworthiness of the airplane is not violated. #### NOTE Alterations or repairs to the airplane must be accomplished by licensed personnel. #### GROUND HANDLING The three-view drawing in Section 1 shows the minimum hangar clearances for a standard airplane. Allowances must be made for any special radio antennas. #### CAUTION To insure adequate propeller clearance, always observe recommended shock strut servicing procedures and tire inflation pressures. #### **TOWING** One person can move the airplane on a smooth and level surface with the hand tow bar. Attach the tow bar to the tow pin on the nose gear lower torque knee. It is recommended to have someone in the airplane to operate the brakes. #### CAUTION Do not exert force on the propellers, control surfaces, or horizontal stabilizers. When towing with a tug, limit turns to prevent damage to the nose gear. Do not attempt to tow airplane backward by the tail tiedown ring. Do not tow when the main gear is obstructed by mud or snow. Also ensure the rudder lock is removed. Care should be used when removing the tow bar to prevent damage to the lubrication fittings on the landing gear. 8-8 June 1982 #### **PARKING** The parking brake control is located either to the right of the control console (TC-1 thru TC-190) or just left of the elevator tab wheel (TC-191 and after) on the pilot's subpanel. To set the parking brakes, pull control out and depress the pilot's toe pedals until firm. Push the control in to release the brakes. #### NOTE Excessive pedal pressure may prevent releasing of the parking brake. The parking brake should be left off and wheel chocks installed if the airplane is to be left unattended. Changes in ambient temperature can cause the brakes to release or to exert excessive pressures. #### TIE-DOWN It is advisable to nose the airplane into the wind. Three tiedown lugs are provided: one on the lower side of each wing and a third at the rear of the fuselage. - 1. Install the control locks. - 2. Chock the main wheels, fore and aft. - 3. Using nylon line or chain of sufficient strength, secure the airplane at the three points provided. DO NOT OVER TIGHTEN; if the line at the rear of the fuselage is excessively tight, the nose may rise and produce lift due to the angle of attack of the wings. - 4. Release the parking brake. If high winds are anticipated, a vertical tail post should be installed at the rear tie-down lug, and a tie-down line attached to the nose gear. #### MAIN WHEEL JACKING - 1. Check the shock
strut for proper inflation to prevent damage to the landing gear door by the jack adapter and to facilitate installation of the adapter. - 2. Insert the main wheel jack adapter into the main wheel axle. - 3. A scissors-type jack is recommended for raising and lowering the wheel. - 4. When lowering the wheel, exercise care to prevent compression of the shock strut, which would force the landing gear door against the jack adapter. #### NOTE Persons should not be in or on the airplane while it is on a main wheel jack. #### PROLONGED OUT OF SERVICE CARE #### STORAGE Storage procedures are intended to protect the airplane from deterioration while it is not in use. The primary objectives of these measures are to prevent corrosion and damage from exposure to the elements. Flyable Storage (7-30 days) has been considered here. For more extended storage periods, consult the Beech Airplane Shop Manual and Continental Service Bulletin M 74-9 or later issue. FLYABLE STORAGE - 7 TO 30 DAYS #### MOORING If airplane cannot be placed in a hangar, tie down securely at the three points provided. Do not use hemp or manila 8-10 June 1982 rope. It is recommended a tail support be used to compress the nose strut and reduce the angle of attack of the wings. Attach a line to the nose gear. #### ENGINE PREPARATION FOR STORAGE Engines in airplanes that are flown only occasionally tend to exhibit cylinder wall corrosion much more than engines that are flown frequently. Run engines at least five minutes at 1200 to 1500 rpm with oil and cylinder head temperatures in the normal operating range. Check for correct oil level and add oil if necessary to bring level to full mark. #### DURING FLYABLE STORAGE Each seven days during flyable storage, the propellers shall be rotated by hand. After rotating each engine six revolutions, stop the propellers 60° or 120° from the position they were in. #### WARNING Before rotation of propeller blades, ascertain magneto/start switches are OFF, throttles are in the CLOSED position, and mixture controls are in the IDLE CUT-OFF position. Always stand in the clear while turning propellers. If at the end of 30 days, airplane will not be removed from storage, the engines shall be started and run. The preferred method will be to fly the airplane for 30 minutes, and up to, but not exceeding normal oil and cylinder temperatures. Section VIII Handling, Serv - Maint BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 **FUEL CELLS** Fill to capacity to minimize fuel vapor and protect cell inner liners. FLIGHT CONTROL SURFACES Lock with internal and external locks. GROUNDING Static ground airplane securely and effectively. PITOT TUBE(S) Install cover(s). WINDSHIELD AND WINDOWS Close all windows and window vents. It is recommended that covers be installed over windshield and windows. #### PREPARATION FOR SERVICE Remove all covers and tape, clean the airplane and give it a thorough inspection, particularly landing gear, wheel wells, flaps, control surfaces, and pitot and static pressure openings. Preflight the airplane. 8-12 June 1982 #### EXTERNAL POWER When using external power, it is very important that the following precautions be observed: 1. The airplane has a negative ground system. Exercise care to avoid reversed polarity. Be sure to connect the positive lead of the auxiliary power unit to the positive terminal of the airplane's external power receptacle and the negative lead to the negative terminal of the external power receptacle. A positive voltage must also be applied to the small guide pin. #### NOTE A negative ground external power source is required. If the polarity is reversed the avionics may be damaged. - 2. To prevent arcing, make certain no power is being supplied when the connection is made. - Make certain that the battery switch is ON, all avionics and electrical switches OFF, and a battery is in the system before connecting an external power unit. This protects the voltage regulators and associated electrical equipment from voltage transients (power fluctuations). #### CHECKING ELECTRICAL EQUIPMENT Connect an auxiliary power unit as outlined in Starting Procedures. Ensure that the current is stabilized prior to making any electrical equipment or avionics check. #### NOTE If the external power unit has poor voltage regulation or produces voltage transients, the airplane electrical equipment connected to the unit may be damaged. 8-14 June 1982 BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Section VIII Handling, Serv - Maint SERVICING FUEL SYSTEM **FUEL TANKS** See Consumable Materials for recommended fuel grades. All fuel tanks in each wing are serviced through two fuel fillers. Refer to the LIMITATIONS section for the usable fuel for both standard and optional fuel tank arrangements. Ground the airplane with a static line before refueling and secure the filler caps immediately after filling. Before letting the airplane stand for several days, it is a good practice to fill the wing fuel system to ensure that the cell inner liners do not dry out and crack, allowing fuel to diffuse through the cell walls. Also, less moisture condensation will occur when fuel tanks are full. If the tanks are to be drained before storage, a coating of light engine oil should be sprayed or flushed onto the inner liners of the cells as a preservative. #### FUEL DRAINS Open each of the snap-type fuel drains to purge any water from the system. The standard fuel system has a total of eight drains. Two sump drains extend through the bottom of each wing. There is one drain in each wing wheel well for the fuel strainer, and two drains extending through the fuselage for the system low spot. #### FUEL STRAINERS To preclude the possibility of contaminated fuel, always cap any disconnected fuel lines or fittings. The fuel strainer in each wheel well should be inspected and cleaned with solvent at regular intervals. The frequency of inspection and cleaning will depend upon service conditions, fuel handling cleanliness, and local sand and dust conditions. At each 100-hour inspection the strainer plug should be removed from the fuel injection control valve and the fuel injection control valve screen washed in fresh cleaning solvent. After the strainer plug has been reinstalled and safetied, the installation should be checked for leakage. A leading edge sump strainer, accessible through an access door on the bottom of the wing, should be cleaned periodically. #### OIL SYSTEM The engines are equipped with a wet sump, pressure type oil system. Each engine sump has a capacity of 12 quarts. The oil system may be checked through access doors in the engine cowling. A calibrated dipstick adjacent to the filler cap indicates the oil level. Due to the canted position of the engines, the dipsticks are calibrated for either right or left engines and are not interchangeable. The oil should be changed every 25 hours under normal operating conditions. The oil drain is accessible through the cowl flap opening. The engines should be warmed to operating temperature to assure complete draining of the oil. Moisture that may have condensed and settled in the oil sump should be drained occasionally by opening the oil drain plug and allowing a small amount of oil to escape. This is particularly important in winter, when the moisture will collect rapidly and may freeze. 8-16 June 1982 The engine manufacturer recommends the use of ashless dispersant oils. In order to promote faster ring seating and oil control, a straight mineral oil should be used for the first change period or until oil consumption stabilizes. Dispersant oils must meet Teledyne Continental Motors Corporation Specification MHS-24B. | Aviation Grade
Oil | Average Ambient
Air Temperature | |-----------------------|------------------------------------| | SAE 50 | Above 5°C (40°F) | | SAE 30 | Below 5°C (40°F) | #### BATTERY The battery is accessible by opening the forward baggage compartment door and removing the battery box cover from the floor of the compartment. Check the electrolyte level after each 25 hours of operation and add distilled water as necessary. Avoid filling over the baffles and never fill over the split ring or more than one-quarter inch over the separator tops. Excessive water consumption may be an indication that the voltage regulators require resetting. The specific gravity of the electrolyte should be checked periodically and maintained within the limits placarded on the battery. The battery box is vented overboard to dispose of electrolyte and hydrogen gas fumes discharged during the normal charging operation. To ensure disposal of these fumes the vent hose connections at the battery box should be checked frequently for obstructions. Section VIII Handling, Serv - Maint BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 **TIRES** An inflation pressure of 50 psi should be maintained on the 6.50 x 8 main wheel tires and the 5.00 x 5 nose wheel tire. Maintaining recommended tire inflation will minimize tread wear and aid in preventing tire failure caused from running over sharp stones and ruts. When inflating tires, visually inspect them for cracks, breaks, or evidence of internal damage. #### CAUTION Beech Aircraft Corporation cannot recommend the use of recapped tires. Recapped tires have a tendency to swell as a result of the increased temperature generated during takeoff. Increased tire size can jeopardize proper function of the landing gear retract system, with the possibility of damage to the landing gear doors and retract mechanism. SHOCK STRUTS #### CAUTION DO NOT taxi with a flat shock strut. The shock struts are filled with compressed air and hydraulic fluid. The same procedure is used for servicing both the main and the nose gear shock struts. To service a strut, proceed as follows: 8-18 June 1982 1. Jack the airplane, remove the air valve cap, depress the valve core, and allow the strut to fully deflate. #### WARNING Do not unscrew the valve body assembly
until all air pressure has been released or it may be blown off with considerable force, causing injury to personnel or damage to equipment. - 2. Carefully remove the valve body assembly. - 3. Compress the strut and fill through the air valve assembly hole with hydraulic fluid (approximately one pint) until the fluid overflows. - 4. Cycle the strut from full extension to compressed and refill. Repeat until no more fluid can be added to the strut in the compressed position. #### NOTE Cycling of the shock strut is necessary to expel any trapped air within the strut housing. - 5. Install the air valve assembly. - 6. With the airplane resting on the ground and the fuel cells full, inflate the nose gear strut until 4-1/2 inches of the piston are exposed and inflate the main gear struts until 3 inches of the piston are exposed. Rock the airplane gently to prevent possible binding of the piston in the barrel while inflating. #### NOTE It is recommended that the nose strut inflation dimension and the tire inflation pressures be carefully adhered to. Properly inflated tires and struts reduce the possibility of ground damage occurring to the propellers. Exercise caution when taxiing over rough surfaces. 7. Remove all foreign material from the exposed piston with a soft cloth moistened with hydraulic fluid. #### CAUTION If a compressed air bottle containing air under extremely high pressure is used, exercise care to avoid over-inflating the shock strut. #### WARNING NEVER FILL SHOCK STRUTS WITH OXYGEN. #### SHIMMY DAMPER The shimmy damper has a reservoir of fluid carried in the piston rod. Two coil springs installed in the piston rod keep fluid in the shimmy damper under pressure. As fluid is lost through leakage it is automatically replenished from the reservoir until the reservoir supply is exhausted. To check the fluid level in the shimmy damper, insert a wire, approximately 1/32 inch in diameter, through the hole in the disc at the aft end of the piston rod until it touches the bottom of the hole in the floating piston. Mark the wire, remove it, and measure the depth of the insertion. When the shimmy damper is full, insertion depth is 2-3/16 inches, when empty, 3-1/16 inches. 8-20 June 1982 ### BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 ## Section VIII Handling, Serv - Maint #### NOTE The measuring wire should be inserted in the hole in the floating piston rather than against the piston face to give a more accurate reading. To determine if the wire is inserted in the hole in the floating piston, insert the wire several times, noting insertion depth each time. When the wire is inserted in the hole, the depth will be about 1/4 inch greater than when it rests against the piston face. When the shimmy damper is found empty or nearly empty, it should be refilled. See Shop Manual. #### **BRAKES** The brake hydraulic fluid reservoir is accessible through the nose baggage compartment. A dipstick is attached to the reservoir cap. Refer to Consumable Materials for hydraulic fluid specification. The brakes require no adjustments since the pistons move to compensate for lining wear. See Shop Manual for specific brake wear limits information. #### INDUCTION AIR FILTERS The filters should be inspected for foreign matter at least once during each 50-hour operating period. In adverse climatic conditions, or if the airplane is stored, preflight inspection is recommended. #### TO REMOVE AND CLEAN THE FILTER: - 1. Remove the access plate in the top of the engine cowling (TC-221 and after) or the cowling upper section (prior to TC-221) secured by three screws at each front and rear corner and nine screws at the aft edge. - 2. Remove the second access plate on top of the air box and slide out the filter. - 3. Remove the filter and clean as noted by the manufacturer's instructions. - 4. Reinstall the filter and the plates. #### PROPELLERS The daily preflight inspection should include a careful examination of the propeller blades for nicks and scratches. Propeller operation, servicing, and maintenance instructions are contained in the propeller owner's manual furnished with the airplane. #### WARNING When servicing a propeller, always make certain that the ignition switch is off and that the engine has cooled completely. WHEN MOVING A PROPELLER, STAND IN THE CLEAR; THERE IS ALWAYS SOME DANGER OF A CYLINDER FIRING WHEN A PROPELLER IS MOVED. 8-22 June 1982 BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Section VIII Handling, Serv - Maint PROPELLER ANTI-ICE TANK (FLUID) The tank is located beneath the floor on the left side of the forward baggage compartment. The filler cap is accessible through an access door in the floor of the compartment. Capacity is 3 U.S. gallons of anti-ice fluid (see Consumable Materials). The tank should be drained and flushed twice a year. #### OXYGEN SYSTEM #### WARNING Keep hands, tools, clothing, and oxygen equipment clean and free from grease and oil. KEEP FIRE AWAY FROM OXYGEN. 1. Read the pressure indicator. (The shutoff valve on the oxygen cylinder must be open.) On serials prior to TC-358 the pressure gage is located on the aft cabin bulkhead. On serials TC-358 and after a pressure gage and a separate oxygen control valve are grouped together on an oxygen console to the left of the pilot. If the oxygen cylinder is equipped with a gage, system pressure may be checked at the cylinder. #### CAUTION Always open the cylinder shutoff valve slowly to prevent damage to the system. 2. Close the cylinder shutoff valve, remove the cap from the filler valve, and attach the recharging outlet. Open valve on supply bottle. - 3. Open the cylinder shutoff valve and fill the cylinder to 1800 ± 50 psi (add 3.5 psi per degree above 70°F; subtract 3.5 psi per degree below 70°F). - 4. Close the cylinder shutoff valve, close valve on the supply bottle, remove the recharging outlet, and replace the filler valve cap. - 5. Reopen the cylinder shutoff valve to prepare system for use. #### OXYGEN CYLINDER RETESTING Oxygen cylinders used in the airplane are of two types. Light weight cylinders, stamped "3HT" on the plate on the side, must be hydrostatically tested every three years and the test date stamped on the cylinder. This bottle has a service life of 4,380 pressurizations or twenty-four years, whichever occurs first, and then must be discarded. Regular weight cylinders, stamped "3A", or "3AA", must be hydrostatically tested every five years and stamped with the retest date. Service life on these cylinders is not limited. #### MINOR MAINTENANCE #### RUBBER SEALS To prevent sticking of the rubber seals around the windows, doors, and engine cowling, the seals should be coated with Oakite 6 compound. The compound is noninjurious to paint and can be removed by employing normal cleaning methods. 8-24 June 1982 #### HEATING AND VENTILATING SYSTEM The heater fuel pump filter in the nose wheel well should be removed and cleaned after each 100 hours of airplane operation. Remove the filter by turning the base of the pump counterclockwise. Wash the filter in clean unleaded gasoline and dry with compressed air. The iris valve at the heater blower inlet should be lubricated occasionally with molybdenum disulfide (see Consumable Materials). The valve should never be lubricated with oil or any liquid lubricant which would collect dust. Do not replace the overheat fuse until a thorough inspection of the system has determined the cause and the malfunction has been corrected. #### **MAGNETOS** Ordinarily, the magnetos will require only occasional adjustment, lubrication, and breaker point replacement. This work should be done by an authorized BEECHCRAFT Aero or Aviation Center or International Distributor or Dealer. #### WARNING To be safe, treat the magnetos as hot whenever a switch lead is disconnected at any point; they do not have an internal automatic grounding device. Otherwise, all spark plug leads should be disconnected or the cable outlet plate on the rear of the magneto should be removed. #### **CLEANING** #### **EXTERIOR PAINTED SURFACES** #### WARNING Do not expose control surface trim tab hinge lines and their pushrod systems to the direct stream or spray of high-pressure, soap-and-water washing equipment. Fluid dispensed at high pressure could remove the protective lubricant, allowing moisture from heavy or prolonged rain to collect at hinge lines, and then to freeze at low temperatures. After high-pressure or hand washing, and at each periodic inspection, lubricate trim tab hinge lines and trim tab pushrod end fittings (Brayco 300 per Federal Specification VV-L-800 preferred). See Consumable Materials. #### CAUTION When cleaning landing gear areas with solvent, especially if high-pressure equipment is used, exercise care to avoid washing away grease from landing gear components. After washing the landing gear areas with solvent, lubricate all lubrication points, or premature wear may result. Do not apply wax, polish, rubbing compound, or abrasive cleaner to any uncured painted surface. Use of such items can permanently damage the surface finish. Also, waxes and polishes seal the paint from the air and prevent curing. Alkyd enamel (sometimes called "automotive enamel"), acrylic enamel, lacquer, and dope #### CAUTION finishes require a curing period of approximately 90 days; Acrylic urethane, polyester urethane, and epoxy finishes undergo a curing process for a period of 30 days after application. Wash uncured painted surfaces with a mild non-detergent soap (MILD detergents can be used on urethane finishes) and cold or lukewarm water only. Use soft cloths, keeping them free of dirt and grime. Any rubbing of the surface should be done gently and held to a minimum to avoid damaging the paint film. Rinse thoroughly with clear water. Stubborn oil or soot deposits may be removed with automotive tar removers. Prior to cleaning, cover the wheels, making certain the brake discs are covered. Attach the pitot cover securely, and plug
or mask off all other openings. Be particularly careful to mask off all static air buttons before washing or waxing. Use special care to avoid removing lubricant from lubricated areas. When using high-pressure washing equipment, keep the spray or stream clear of wheel bearings, propeller hub bearings, etc., and openings such as pitot tubes, static air buttons, and battery and avionics equipment cooling ducts, which should be securely covered or masked off. Avoid directing high-pressure sprays toward the fuselage, wings, and empennage from the rear, where moisture and chemicals might more easily enter the structure, causing corrosion damage to structural members and moving parts. Hand washing may be accomplished by flushing away loose dirt with clean water, then washing with a mild soap and water, using soft cleaning cloths or a chamois. Avoid harsh, abrasive, or alkaline soaps or detergents which could cause corrosion or scratches. Thorough clear-water rinsing pre- Revised: March 1983 vents buildup of cleaning agent residue, which can dull the paint's appearance. To remove oily residue or exhaust soot, use a cloth dampened with an automotive tar remover. Wax or polish the affected area, if necessary. There is some variation in the procedures required for proper care of the several types of exterior paint. During the curing period, do not make prolonged flights in heavy rain or sleet, and avoid all operating conditions which might cause abrasion or premature finish deterioration. Alkyd enamel, lacquer, and dope finishes must be polished and waxed periodically to maintain luster, and to assure protection from the weather. Acrylic enamel should be waxed, and may be polished, if desired. Acrylic urethane may be waxed for protection from the elements, but should not be polished unless polishing or buffing is required to restore a damaged area. Waxing of polyester urethane finishes, although not required, is permitted; however, never use abrasive cleaner type waxes, polishes, or rubbing compounds, as these products cause eventual deterioration of the characteristic urethane gloss. Epoxy finishes should be waxed on a regular basis, and may be polished and buffed to restore appearance should "chalking" occur. For waxing, select a high quality automotive or aircraft waxing product. Do not use a wax containing silicones, as silicone polishes are difficult to remove from surfaces. A buildup of wax on any exterior paint finish will yellow with age; therefore, wax should be removed periodically. Generally, alphatic naptha (see Consumable Materials) is adequate and safe for this purpose. #### NOTE Before returning the airplane to service, remove all maskings and coverings, and relubricate as necessary. 8-28 Revised: March 1983 # Section VIII Handling, Serv - Maint #### WINDSHIELD AND WINDOWS The windshield and plastic windows should be kept clean and waxed at all times. To prevent scratches wash the windows carefully with plenty of soap and water, using the palm of the hand to feel and dislodge dirt and mud. A soft cloth, chamois or sponge may be used, but only to carry water to the surface. Rinse thoroughly, then dry with a clean, moist chamois. Rubbing the surface of the plastic with a dry cloth builds up an electrostatic charge which attracts dust particles in the air. Remove oil and grease with a cloth moistened with isopropyl alcohol. Never use gasoline, benzine, alcohol, acetone, carbon tetrachloride, fire extinguisher fluid, anti-ice fluid, lacquer thinner or glass cleaner. These materials will soften plastic and may cause it to craze. After thoroughly cleaning, the surface should be waxed with a good grade of commercial wax. The wax will fill in the minor scratches and help prevent further scratching. Apply a thin, even coat of wax and bring it to a high polish by rubbing lightly with a clean, dry, soft flannel cloth. Do not use a power buffer; the heat generated by the buffing pad may soften the plastic. #### SURFACE DEICE BOOTS The surfaces of the deice boots should be checked for indication of engine oil after servicing and at the end of each flight. Any oil spots that are found should be removed with a non-detergent soap and water solution. Care should be exercised during cleaning. Avoid scrubbing the surface of the boots as this will tend to remove the special graphite surfacing. The deice boots are made of soft, flexible stock which may be damaged if gasoline hoses are dragged over the surface of the boots or if ladders and platforms are rested against them. #### **ENGINE** Clean the engine with neutral solvent. Spray or brush the fluid over the engine, then wash off with water and allow to dry. #### CAUTION Do not use solutions which may attack rubber or plastic. Protect engine switches, controls, and seals; fluid applied at high pressure can unseat seals, resulting in contamination of the sealed systems. #### INTERIOR To remove dust and loose dirt from the upholstery, headliner, and carpet, clean the interior regularly with a vacuum cleaner. Blot up any spilled liquid promptly wth cleansing tissue or rags. Do not pat the spot; press the blotting material firmly and hold it for several seconds. Continue blotting until no more liquid is taken up. Scrape off sticky materials with a dull knife; then spot-clean the area. Oily spots may be cleaned with household spot removers, used sparingly. Before using any solvent, read the instructions on the container and test it on an obscure place on the fabric to be cleaned. Never saturate the fabric with a volatile solvent; it may damage the padding and backing materials. 8-30 June 1982 Section VIII Handling, Serv - Maint Soiled upholstery and carpet may be cleaned with foamtype detergent used according to the manufacturer's instructions. To minimize wetting the fabric, keep the foam as dry as possible and remove it with a vacuum cleaner. The plastic trim, instrument panel, and control knobs need only be wiped with a damp cloth. Oil and grease on the control wheel and control knobs can be removed with a cloth moistened with isopropyl alcohol. Volatile solvents, such as mentioned in the article on care of plastic windows should never be used since they soften and craze the plastic. Section VIII Handling, Serv - Maint 8-32 June 1982 Section VIII Handling, Serv - Maint **HEATER IRIS VALVE** NOSE GEAR RETRACT NOSE WHEEL STEERING Section VIII Handling, Serv - Maint BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 CONTROL COLUMN LINKAGE **CABIN DOOR** LANDING GEAR ACTUATOR GEAR BOX 8-34 June 1982 # Section VIII Handling, Serv - Maint AILERON TAB AILERON BELL CRANKS FLAP ACTUATOR LANDING GEAR DOOR HINGES LANDING GEAR RETRACT 8-36 June 1982 NOTE: Letters are keyed to the Service Schedule; Numbers refer to items in the Consumable Materials Chart. June 1982 ## RECOMMENDED SERVICING SCHEDULE | INTERVAL | ITEM | LOCATION
(Letters refer to Lubrication
Points Diagram) | (Number refers
to item on
Consumable Materials) | |----------|-----------------------------------|--|---| | Pre- | Check engine oil level | Access door on upper cowlin | g 6 | | flight | Drain main fuel cell drains | Lower wing surface (leading | edge) - | | • | Drain fuel strainer drains | Wing surface fwd of main wheel well | - | | | Drain fuel system low spot drains | Lower fuselage, inboard of wing root | - | | | Drain heater fuel filter | Nose wheel well | _ | | | Drain box section cell | Aft bottom wing surface | - | | | Service fuel cells | Top of wings | 7 | | 25 Hrs. | Check battery electrolyte | Fwd baggage compartment under floor | See Shop Manual | | | Change engine oil | Access plate on lower nacelle | 6 | | | Clean oil screen | Access door on right side of cowl | 9 | | June 1 | 50 Hrs. | Clean induction air filter
†Lubricate landing gear
uplock rollers | Access plate, induction scoop
Main landing gear (L) | 5 | |--------|----------|---|---|----------------| | 1982 | 100 Hrs. | Clean fuel strainers Clean fuel injection control valve screen Clean heater fuel filter Clean heater fuel | In wheel wells Access door on side of nacelle Nose wheel well Nose wheel well | *9
*9
*9 | | | | pump strainer †Lubricate landing gear uplock rollers Clean and check spark | Main landing gear (L) | *9
13 | | | | plugs
Check magneto timing | Under cowl, both sides
engine
Engine compartment (N) | - | | | | Lubricate landing gear door hinges | Landing gear wheel wells
(K) (P) | 5 | | | | Lubricate nose wheel steering mechanism | Nose wheel well (C) | 3 | | | | Lubricate landing gear retract mechanism | Nose wheel and main gear
wheel wells (B) (L) | 3 | | œ | <u></u> | Lubricate wheel bearings | Landing gear (B) (L) | 1 | ^{*}Clean with solvent and blow dry with compressed air. June 1982 Section VIII Handling, Serv - Maint BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 | INTERVAL | ITEM | LOCATION
(Letters refer to Lubrication
Points Diagram) | (Number refers
to item on
Consumable Materials | |---------------------|--|--|--| | 100 Hrs.
(Cont.) | Lubricate cabin door
mechanism | Cabin door latch (E) | 5 | | | Lubricate aileron bell
cranks and control
rod ends | Access panel underside wings (I) | 5, 13 | | | Lubricate control column linkage | Forward of instrument panel (D) | 5 | | | Lubricate rudder pedals | Cockpit (O) | 5 | | | Drain static air lines | Left aft cabin sidewall | - | | | Replace gyro filters | Back of gyro instruments | - | | | Clean oil separator | On firewall | - | | | | | | | | | | | 8-41 |
300 Hrs. | Rod end bearings Service landing gear actuator gear box | Control system and
landing gear
Under front seats (F) | Oil or grease
as required
11 | |---|--|--|------------------------------------| | 600 Hrs. | Service landing gear
motor-reduction gears
Lubricate flap motor
reduction gears | Under front spar
cover (F)
Under front spar cover (M) | 3
13 | | 900 Hrs. | Lubricate flap flex drives
Lubricate flap actuators | Under front spar cover (M)
Forward of flap
underside of wing (J) | 13
12 | | 900 Hrs.
or 5 years
whichever
occurs first | Lubricate rudder and el-
evator trim tab actuators
Lubricate aileron trim
tab actuators | Empennage (G) Aileron (H) | 3
3 | BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Section VIII Handling, Serv - Maint June 1982 | INTERVAL | - ITEM | LOCATION
(Letters refer to Lubrication
Points Diagram) | (Number refers
to item on
Consumable Materials | |----------|--------------------------------------|--|--| | As Req. | Service wing fuel system | At wing fillers | 7 | | | Service propeller anti-ice reservoir | Under left floorboard,
forward baggage
compartment | 8 | | | Service oxygen cylinder | Behind aft bulkhead | 18 | | | Service brake fluid reservoir | Nose baggage compartment | 2 | | | Drain moisture from engine oil sump | Through cowl flap opening | - | | | Drain static lines | Left aft cabin sidewall | - | | | Service main gear struts | Top of each strut (L) | 2 | | | Service nose gear strut | Top of strut (B) | 2 | | | Service shimmy damper | Nose landing gear (B) | 2 | | | Check brake lining wear | Main landing gear wheels | - | | | Lubricate heater iris | Forward nose compart-
ment (A) | 4 | Section VIII BEECHCRAFT Baron 55, A55 Handling, Serv - Maint Serial TC-1 thru TC-501 | Note 3 | Replace emergency locator transmitter battery | At emergency locator | | |----------|---|----------------------|--| | <u> </u> | | | | NOTES: - 1. Anytime the control surfaces are altered, repaired, or repainted, they must be rebalanced per the Shop Manual. - 2. Check the wing bolts for proper torque at the first 100-hour inspection and at the first 100-hour inspection after each reinstallation of the wing attach bolts. - 3. Rechargeable Batteries: Recharge after one cumulative hour of use or after 50% of the useful charge life. Non-rechargeable Batteries: Replace after one cumulative hour or as noted on the battery. † TC-1 through TC-501 which have not been modified per S.I. 0448-211; the uplock roller should be lubricated with oil at 50 hours and hand packed with grease at 100 hours. #### CONSUMABLE MATERIALS Only the basic number of each Military Specification is included in the Consumable Materials Chart. No attempt has been made to update the basic number with the letter suffix that designates the current issues of the various specifications. Vendors listed as meeting Federal and Military Specifications are provided as reference only and are not specifically recommended by Beech Aircraft Corporation; consequently, any product conforming to the specification listed may be used. The products listed below have been tested and approved for aviation usage by Beech Aircraft Corporation, by the vendor, or by compliance with the applicable specifications. Other products that are locally procurable which conform to the requirements of the applicable Military Specification may be used even though not specifically included herein. It is the responsibility of the operator/user to determine the current revision of the applicable Military Specification prior to usage of that item. This determination may be made by contacting the vendor of a specific item. #### CONSUMABLE MATERIALS ITEM MATERIAL SPECIFICATION 1. Lubricating Grease Aeroshell No. 5 or High Temperature MIL-G-81322 #### CAUTION Do not mix Aeroshell No. 5 with MIL-G-81322. Thoroughly clean grease from bearings and bearing area before changing grease. 8-44 June 1982 # Section VIII Handling, Serv - Maint 8-45 | ITEM | MATERIAL | SPECIFICATION | |-------|---------------------------------|---| | 2. | Hydraulic Fluid | MIL-H-5606 | | *3. | General Purpose, | MIL-G-81322 | | 4. | Molybdenum Disulfide | MIL-M-7866 | | 5. | Lubricating Oil | SAE No. 20 or
SAE 10W-30 | | **6. | Engine Oil | SAE 30 (Below 40°F)
SAE 50 (Above 40°F)
Approved Multi-
viscosity Oils | | ***7. | Engine Fuel | Grade 100LL (Blue)
preferred, 100
(Green) | | 8. | Anti-Ice Fluid | MIL-F-5566 | | 9. | Solvent | Federal Specification,
PD680 | | 10. | Lubricant | Scintilla 10-86527 | | 11. | Lubricant | Mobil Compound GG or Mobil 636 | | 12. | Lubricating Oil, Gear | MIL-L-10324, or
MIL-L-2105C,
Grade 75W | | 13. | Grease, Aircraft and Instrument | MIL-G-23827 | Section VIII BEECHCRAFT Baron 55, A55 Handling, Serv - Maint Serial TC-1 thru TC-501 ITEM MATERIAL SPECIFICATION †14. Lubricant, Rubber Oakite 6 Compound Seal 15. Naptha, Aliphatic Federal Specification, TT-N-95 ††16. Tape, Antiseize Tetrafluorethylene MIL-T-27730 17. Leak Test Compound, Oxygen Systems MIL-L-25567 18. Oxygen, Aviator's Breathing MIL-0-27210 19. Lubricating Oil, ●Brayco 300 per General Purpose, Federal Specifi-Preservative (Watercation VV-L-800 Displacing, Low (Preferred) Temperature) Alternates for Brayco 300: ●●CRC 3-36 Lubricant •••LPS No. 1 ●●●WD-40 # Section VIII Handling, Serv - Maint - * In extremely cold climates use MIL-G-23827 grease in place of MIL-G-81322. (These greases harmful to paint.) - ** Ashless dispersant oil (latest revision of Teledyne Continental Motors Corp. Spec. MHS-24) recommended; straight mineral oils recommended during break-in period. See servicing data. - *** If 100LL grade fuel (blue) is not available, use 100 (green) as minimum grade. See Engine Manufacturer's Service Letter for recommended maintenance and servicing techniques. - † Product of Oakite Products, Inc., 50 Valley Road, Berkley Heights, N.J. 07922. - †† For sealing tapered pipe threads on high pressure oxygen lines. - Product of Bray Oil Co., 1925 North Marianna Los Angeles, Calif. 90032 - Product of CRC Chemicals, Inc., Warminster, Pa. 18974 - Product of LPS Research Laboratories, Inc., 2050 Cotner Ave, W. Los Angeles, Calif. 90025 - Product of WD-40 Company,1061 Cudahy Place,San Diego, Calif. 92110 Revised: March 1983 # Section VIII Handling, Serv - Maint (Australia) Continental Oil Co. # BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 #### APPROVED ENGINE OILS Conoco Aero S COMPANY BRAND AND WEIGHT BP Oil Corporation BP Aero Oil Castrol Limited Castrolaero AD Oil Delta Petroleum Co. Delta Avoil Oil Exxon Company, Exxon Aviation Oil EE U.S.A. Gulf Oil Corporation Gulfpride Aviation AD Mobil Oil Company Mobil Aero Oil Pennzoil Company Pennzoil Aircraft Engine Oil Phillips Petroleum Co. Phillips 66 Aviation Oil Type A Phillips X/C Aviation Multiviscosity Oil SAE 20W-50 Phillips X/C Aviation Multiviscosity Oil SAE 25W-60 Quaker State Oil & Quaker State AD Aviation Refining Corp. Engine Oil Red Ram Limited Red Ram X/C Aviation (Canada) Oil20W-50 Shell Canada, Ltd. Aeroshell Oil W 8-48 June 1982 Section VIII Handling, Serv - Maint COMPANY BRAND AND WEIGHT Shelf Oil Company Aeroshell Oil W SAE 15W/50 Aeroshell Oil W Sinclair Refining Co. Sinclair Avoil Texaco, Inc. Texaco Aircraft Engine Oil - Premium AD Union Oil Co. of California Union Aircraft Engine Oil #### NOTE This chart lists all oils which were certified as meeting the requirements of Teledyne Continental Motors Specification MHS-24B at the time this handbook was published. Any other oil which conforms to this specification may be used. # Section VIII BEECHCRAFT Baron 55, A55 Handling, Serv - Maint Serial TC-1 thru TC-501 # **BULB REPLACEMENT GUIDE** | LOCATION | NUMBER | |--|-------------------| | Compass light | 303 | | Cowl flap position light | 313 | | Dome light, cabin | 303 | | Electrical panel light | 327 | | Flap position indicator light | 327 | | Fuel selector placard light | 327 | | Ice light | A-7796A-24 | | Instrument light, flood | 303 | | Instrument light, post | 327 | | Landing gear position light | 327 | | Landing gear visual indicator light | 356 | | Landing light Prior to TC-400 TC-400 and after | 4523
4596 | | Map light | 303 | | Navigation light, tail | 1203 | | Navigation light, wing | 1524 | | Overvoltage warning light (A55) | 330 | | Reading light | 1495 | | Rotating beacon | A-7079B-24 Grimes | | Stall warning light (55) | 327 | | Tab position indicator light 55 A55 | 356
1819R | | Taxi light | 4570 | 8-50 June 1982 #### OVERHAUL OR REPLACEMENT SCHEDULE The first overhaul or replacement should be performed not later than the required period. The condition of the item at the end of the first period can be used as a criterion for determining subsequent periods applicable to the individual airplane or fleet operation, providing the operator has an approved monitoring system. The time periods for inspection noted in this handbook are based on average usage and average environmental conditions #### SPECIAL CONDITIONS CAUTIONARY NOTICE Airplanes operated for Air Taxi or other than normal operation and airplanes operated in humid tropics or cold and damp climates, etc., may need more frequent inspections for wear, corrosion and/or lack of lubrication. In these areas periodic inspections should be performed until the operator can set his own inspection periods based on experience. #### NOTE The required periods do not constitute
a guarantee that the item will reach the period without malfunction, as the aforementioned factors cannot be controlled by the manufacturer. Section VIII Handling, Serv - Maint BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 #### COMPONENT #### **OVERHAUL OR REPLACE** #### LANDING GEAR Main gear assembly Every 2000 hours Nose gear assembly Every 2000 hours Actuator assembly All except -11 Every 2000 hours P/N 95-810017-11 Every 4000 hours Retract motor Every 2000 hours condition Shimmy damper Every 1000 hours Wheels and tires Brake assembly On condition Brake lining Master cylinder Shuttle valve assembly Parking brake valve All hose On condition On condition On condition On condition #### **POWER PLANT** #### NOTE When an engine has been overhauled, or a new engine installed, it is recommended that low power settings not be used until oil consumption has stabilized. The average time for piston ring seating is approximately 50 hours. Engine *Every 1500 hours Engine controls On condition Engine vibration isolator Engine change or on con- mounts dition Exhaust system On condition Engine driven fuel pump 1500 8-52 June 1982 Section VIII Handling, Serv - Maint #### COMPONENT OVERHAUL OR REPLACE Oil cooler On condition (replace when contaminated) Propeller (Hartzell) **1500 hours or 4 years. Propeller (McCauley) ***1500 hours or 5 years. Propeller controls On condition Propeller governor At engine overhaul but not to exceed 1500 hours or 3 years Vacuum pumps Every 1200 hours All hose Hose carrying flammable liquids at engine overhaul or every 5 years. All other hose on condition. #### FUEL SYSTEM Fuel cells and On condition strainer drain valves Wing fuel quantity On condition transmitters Fuel cell drain valve On condition Fuel system check valves On condition Fuel selector valves Inspect every 500 hours Overhaul every 1200 hours Aux fuel pump Every 1200 hours All hose Hose carrying flammable liquids at engine overhaul or every 5 years. All other hose on condition. Vent line check valve On condition Section VIII Handling, Serv - Maint BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 #### COMPONENT #### **OVERHAUL OR REPLACE** #### **INSTRUMENTS** Turn coordinator On condition Altimeter Every 24 months per FAA Directive (Inspect and Calibrate) Directional gyro On condition Gyro horizon On condition Gyro pressure On condition Engine indicator units On condition Airspeed indicator On condition Rate-of-climb On condition Fuel pressure gage On condition Manifold pressure indicator On condition Tachometer On condition Free air temperature On condition indicator Deice pressure gage On condition All hose On condition Suction gage On condition #### **ELECTRICAL SYSTEM** Dynamic brake relay On condition Battery master relay On condition Paralleling relay On condition All other relays On condition Voltage regulator On condition Starter At engine over- haul or replace on condition on condition Starter relay On condition Generator On condition Landing gear 1200 hours - replace selector switch 8-54 June 1982 # Section VIII Handling, Serv - Maint #### COMPONENT #### **OVERHAUL OR REPLACE** #### UTILITY SYSTEMS Cabin heater Pressure test every 500 > hours of heater operation or every 1000 hours of airplane operation and overhaul every 1500 hours of heater operation or 3000 hours of airplane operation (whichever comes first) Switch points every 1000 Heater ignition assembly hours of heater opera- tion and replace every 2000 hours of heater operation (See Shop Manual) Heater blower On condition Heater fuel pump On condition Heater fuel shut-off valve On condition Every 2000 hours or Oxygen regulator 48 months Oxygen cylinder (3HT) Hydrostatically test every > 3 years, replace every 24 years or 4,380 refills (ICC Regulation) Oxygen cylinder (3A or 3AA) Hydrostatically test every 5 years; no replacement duration On condition All hose Propeller/windshield On condition anti-ice pump On condition Vacuum regulator 8-55 June 1982 Section VIII Handling, Serv - Maint BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 #### COMPONENT #### **OVERHAUL OR REPLACE** #### FLAPS AND FLIGHT CONTROLS Flight controls On condition Aileron tab actuator On condition Elevator tab actuator On condition Rudder tab actuator On condition Flap track rollers Every 1000 hours Flap motor and drives Every 2000 hours Flap motor brushes On condition Flap actuators Every 2000 hours Flap flexible shaft Every 2000 hours #### NOTE Any time the control surfaces are altered, repaired, or repainted, they must be rebalanced per Shop Manual. #### MISCELLANEOUS Seat belts or Shoulder Harnesses Hand fire extinguisher Inspect every 12 months, replace on condition Inspect every 12 months, recharge as necessary 8-56 June 1982 * The recommended engine overhaul period applies only to engines with nickel-coated exhaust valves or nimonic exhaust valves, provided that normal periodic inspections are properly carried out. Engines that should conform to a shorter TBO period are listed in Teledyne Continental Motors Corporation Service Bulletin M79-14, Rev. I, dated April 21, 1980, or later issue. Continental recommends a maximum of 1200 hours TBO on engines employed in aerial top dressing, dusting, or spraying. With particular attention to throttle response, smooth power and oil consumption, a qualified mechanic must determine that the engine is operating normally at the time of each periodic inspection. - ** Refer to Hartzell Propeller, Inc. Service Letter No. 61F, dated August 31, 1979, or later issue. - *** Applies only to propellers with hub serial number 71XXXX and higher; all other propellers; 1200 hours or 5 years. Section VIII BEECHCRAFT Baron 55, A55 Handling, Serv - Maint Serial TC-1 thru TC-501 INTENTIONALLY LEFT BLANK 8-58 June 1982 # SECTION VII SYSTEMS DESCRIPTION ## **TABLE OF CONTENTS** | SUBJECT | PAGE | |--------------------------------|--------| | Airframe | 7-5 | | Flight Controls | 7-5 | | Control Surfaces | 7-5 | | Control Column | 7-5 | | Rudder Pedals | 7-5 | | Trim Controls | 7-6 | | Instrument Panel | 7-6 | | Flight Instruments | 7-6 | | Power Plant Instruments | 7-6 | | Illustration 7-8 | 3, 7-9 | | Illustration 7-10, | 7-11 | | Ground Control | 7-7 | | Wing Flaps | 7-7 | | Landing Gear System | 7-7 | | Control Switch | 7-12 | | Position Indicators | 7-12 | | Safety Switch | 7-12 | | Warning Horn | 7-13 | | Manual Extension | 7-13 | | Brakes | 7-13 | | Baggage/Cargo Compartments | 7-14 | | Aft Baggage/Cargo Compartment | 7-14 | | Nose Baggage/Cargo Compartment | 7-15 | | Seating | 7-15 | # **TABLE OF CONTENTS (Continued)** | SUBJECT | PAGE | |---------------------------------|--------| | Doors, Windows, and Exits | | | Forward Cabin Door | | | Openable Cabin Windows | | | Emergency Exits | | | Control Locks | | | Power Plants | | | Power Plant Controls | | | Propeller, Throttle and Mixture | | | Induction Air | | | Lubrication System | | | Cowl Flaps | | | Propellers | 7-19 | | Fuel System | 7-22 | | Schematic 7-20, | , 7-21 | | Fuel Pressure Indicator | 7-22 | | Fuel Crossfeed | 7-24 | | Fuel Boost Pumps | 7-24 | | Fuel Required for Flight | 7-25 | | Electrical System | 7-27 | | Schematic | 7-26 | | Battery | 7-27 | | Generators | 7-27 | | Starters | 7-28 | | External Power | 7-28 | | Lighting Systems | 7-29 | | Interior Lighting | 7-29 | | Exterior Lighting | | | Heating and Ventilation System | | | Cabin Heating | | | Heater Operation | | | Heat Regulation | | | Heater Blower | 7-31 | | Environmental Schematic 7-32, | | | | | | Cabin Ventilation | 7-34 | 7-2 Revised: March 1983 # Section VII Systems Description # **TABLE OF CONTENTS (Continued)** | SUBJECT | PAGE | |--------------------------------|------| | Exhaust Vents | 7-34 | | Individual Fresh Air Outlets | 7-34 | | Oxygen System | 7-35 | | Pitot and Static System | | | Pitot System | | | Normal Static System | | | Alternate (Emergency) Static | | | System | 7-36 | | Vacuum System | | | Stall Warning | | | Ice Protection Systems | | | Propeller and Windshield | | | Anti-ice System (Fluid Flow) | 7-38 | | Electrothermal Propeller Deice | | | Pitot Heat | | | Stall Warning Anti-ice | | | Engine Break-in Information | | # INTENTIONALLY LEFT BLANK 7-4 June 1982 ## **AIRFRAME** The BEECHCRAFT 55 and A55 BARON models are both four to five place all-metal, low-wing, twin-engine air-planes with retractable tricycle landing gear, and a conventional horizontal and vertical stabilizer. #### FLIGHT CONTROLS #### CONTROL SURFACES Control surfaces are bearing supported and operated through push-pull rods and conventional cable systems terminating in bellcranks. #### CONTROL COLUMN The throw-over type control column for elevator and aileron control can be placed in front of either front seat. Pull the T-handle latch at the back of the control arm and position the control wheel as desired. Check for full freedom of movement after repositioning the control. The optional dual control column is required for flight instruction. #### RUDDER PEDALS To adjust the rudder pedals, press the spring-loaded lever on the side of each pedal arm and move the pedal to its forward or aft position. The adjustment lever can also be used to place the right set of rudder pedals against the floor, (when the copilot brakes are not installed) when not in use. #### TRIM CONTROLS All trim tabs are adjustable from the control console. A position indicator is provided for each. The left aileron tab incorporates serve action in addition to its trimming purpose. Elevator trim is controlled by a hand wheel located to the left of the throttles. An elevator tab indicator dial is located above and to the left of the trim control hand wheel. #### INSTRUMENT PANEL #### FLIGHT INSTRUMENTS The flight instruments are located on a floating panel directly in front of the pilot's seat. Standard flight instrumentation includes attitude and directional gyros, airspeed, altimeter, vertical speed, turn coordinator, and a clock. A magnetic compass is mounted above
the instrument panel and an outside air temperature indicator is either installed in the windshield (TC-1 thru TC-190) or located on the left side panel (TC-191 thru TC-501). Located on the right side of the instrument panel is the standard vacuum gage for the instrument air system. #### POWER PLANT INSTRUMENTS Most of the engine instruments are located in the upper center of the instrument panel. The standard indicators for each engine are as follows: tachometers, manifold pressure, fuel pressure, fuel quantity, and loadmeters. Other indicators such as the exhaust gas temperature system, the propeller deice ammeter (or propeller alcohol quantity and deice pressure) are usually installed on the right side of the instrument panel. Two multi-purpose instruments, one for each engine, indicate cylinder head temperature, oil pressure, and oil temperature. 7-6 June 1982 #### **GROUND CONTROL** Spring-loaded linkage from the nose gear to the adjustable rudder pedals allows for nose wheel steering. Smooth turning is accomplished by allowing the airplane to roll while depressing the appropriate rudder pedal. The minimum wing tip turning radius, using partial braking action and differential power, is 29 feet 6 inches. #### WING FLAPS The wing flaps are controlled by a three-position switch, UP, OFF and DOWN, located on the left of the center console. The control must be pulled out of detent before it can be repositioned. The flap position lights show green for the up position and red for the full-down landing position—intermediate 20-degree and 10-degree positions are indicated by lines painted on the leading edge of the left flap. The intermediate positions are reached when the marks are aligned with the trailing edge of the wing. Limit switches automatically turn off the electric motor when the flaps reach the extremes of travel. #### LANDING GEAR SYSTEM #### CAUTION Never taxi with a flat strut. The landing gear is operated through adjustable linkage connected to an actuator assembly mounted beneath the front seats. The actuator assembly is driven by an electric motor. The landing gear may be electrically retracted and extended, and may be extended manually. 7-8 June 1982 LEFT SIDE PANEL (TC-2 thru TC-23) \oplus **LEFT SUBPANEL DOOR** June 1982 7-9 RIGHT SUBPANEL DOOR # BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 7-10 June 1982 # Section VII Systems Description #### CONTROL SWITCH The landing gear is controlled by a two-position switch on the right side of the control console. The switch handle must be pulled out of the safety detent before it can be moved to the opposite position. Never operate the landing gear electrically with the handcrank engaged. #### CAUTION Do not change the position of the control switch to reverse the direction of the landing gear while the gear is in transit, as this could cause damage to the retract mechanism. #### POSITION INDICATORS Landing gear position lights are located adjacent to the control switch. The lights, red for gear up and green for gear down, illuminate only when the gear has reached the fully retracted or extended position. In addition, a mechanical pointer at the base of the console shows the position of the nose gear during transit and in the full up or full down position. #### SAFETY SWITCH To prevent inadvertent retraction of the landing gear on the ground, a main strut safety switch opens the control circuit when the strut is compressed. #### CAUTION Never rely on the safety switch to keep the gear down during taxi or on take-off, landing roll, or in a static position. Always make certain that the landing gear switch is in the down position during these operations. 7-12 June 1982 # BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 # Section VII Systems Description #### WARNING HORN If either or both throttles are retarded below an engine setting sufficient to sustain two engine flight with the landing gear retracted, a warning horn will sound intermittently. During one engine operation, the horn can be silenced by advancing the throttle of the inoperative engine until the throttle warning horn switch opens the circuit. #### MANUAL EXTENSION The landing gear can be manually extended, but not retracted, by operating the handcrank on the rear of the pilot's seat. The landing gear handle must be in the down position and the landing gear MOTOR circuit breaker must be pulled before manually extending the gear. When the electrical system is operative, the landing gear may be checked for full down with the gear position lights, provided the landing gear RELAY circuit breaker is engaged. After the landing gear is down, disengage the handcrank. For electrical retraction of the landing gear after a practice manual extension use procedures outlined in the EMER-GENCY PROCEDURES section. If the landing gear was extended for emergency reasons, do not move any landing gear controls or reset any switches or circuit breakers until the airplane is on jacks, to prevent a gear retraction on the ground. These procedures are outlined in the EMERGENCY PROCEDURES section. #### **BRAKES** The brakes on the main landing gear wheels are operated by applying toe pressure to the top of the rudder pedals. #### CAUTION Continuous brake application of either the pilot's or copilot's brake pedals in conjunction with an overriding pumping action from the opposite brake pedals could result in the loss of braking action on the side which continuous pressure is being applied. The parking brake control is located just to the right (TC-1 thru TC-190) or to the left (TC-191 and after) of the control console. To set the parking brakes, pull the control out and depress the pilot's toe pedals until firm. Push the control in to release the brakes. #### NOTE The parking brake should be left off and wheel chocks installed if the airplane is to be left unattended. Changes in ambient temperature can cause the brakes to release or to exert excessive pressures. The brakes hydraulic fluid reservoir is accessible through the nose baggage door. Fluid level is checked with the dipstick attached to the reservoir cap. The brakes require no adjustments, since the pistons move outward to compensate for lining wear. # BAGGAGE/CARGO COMPARTMENTS # AFT BAGGAGE/CARGO COMPARTMENT The aft baggage/cargo compartment is accessible through the baggage door on the right side of the fuselage. This area extends aft of the pilot's seats to the rear bulkhead. Because of structural limitations, this area is divided into three sections, each having a different weight limitation. Loading within the baggage/cargo compartment must be in accordance with the data in the WEIGHT AND BALANCE section. All cargo must be secured with the approved cargo retention systems. 7-14 June 1982 #### WARNING Do not carry hazardous material anywhere in the airplane. Do not carry passengers in the baggage or cargo area unless secured in a seat. # NOSE BAGGAGE/CARGO COMPARTMENT The forward baggage/cargo compartment is easily accessible through a large door on the right side of the nose. The door, hinged at the top, swings upward, clear of the loading area. Loading within this area must be within the limitations according to the WEIGHT AND BALANCE section. The nose baggage/cargo compartment incorporates the full width of the fuselage as usable space. This compartment also affords accessibility to some of the airplane's avionics. Straps are provided and should be used to secure any baggage or cargo loaded into the nose baggage/cargo compartment. #### SEATING To adjust any of the four standard seats forward or aft, pull up on the release bar below the seat and slide the seat to the desired position. The seat backs of all standard seats can be placed in any of four positions by operating a release lever on the inboard side of each seat. An option is available that provides for the seat backs on all standard seats (except the pilot's) to be placed in any position from vertical to fully reclined. Outboard armrests for all standard seats are built into the cabin sidewalls. A center armrest for the front seats can be elevated or positioned flush with the seat cushions. The center armrests for the standard rear seats are either removable (55) or can fold into a stowed position behind the seat backs (A55). The optional fifth seat can be folded up to provide additional floor space, or folded down to provide access to the extended baggage/cargo compartment. # DOORS, WINDOWS AND EXITS #### FORWARD CABIN DOOR The airplane has a conventional cabin door on the forward right side of the fuselage and when closed, the outside cabin door handle is spring loaded to fit into a recess in the door to create a flat aerodynamically clean surface. The door may be locked with a key. To open the door from the outside, lift the handle from its recess and pull until the door opens. To close the cabin door from the inside, observe that the door handle is in the unlocked position. In this position, the latch handle is free to move approximately one inch in either direction before engagement of the locking mechanism. Then grasp the door and firmly pull the door closed. Rotate the door handle fully counterclockwise into the locked position. When the door is properly locked, the door latch handle is free to move approximately one inch in either direction. #### NOTE When checking the door latch handle, do not move it far enough to engage the door latch release mechanism. Press firmly outward at the top rear corner of the door. If any movement of the door is detected, completely open the door and close again following the above instructions. To open the door from the inside, depress the lock button and rotate the handle clockwise. 7-16 June 1982 #### **OPENABLE CABIN WINDOWS** To open window; release latch front of bar, pull bar at the bottom of the window out and upward. Window will open approximately two inches. Close window by pulling inward and down on the bar at the bottom of the window.
Resistance will be felt as the bar moves downward. Continue moving bar downward to its lowest position. Check that bar is locked by the latch. #### NOTE Windows are to be closed before takeoff and during flight. While closing window, ascertain that the emergency release pin (which allows the window to open fully for emergency exit) is securely in place. Section VII BEECHCRAFT Baron 55, A55 Systems Description Serial TC-1 thru TC-501 INTENTIONALLY LEFT BLANK Revised: March 1983 7-16B ## **EMERGENCY EXITS** To open the emergency exit provided by the openable middle window on each side of the cabin: - 1. Lift the latch. - 2. Pull out the emergency release pin and push the window out. The above procedure is described on a placard installed below the left and right middle windows. #### CONTROL LOCKS - 1. Insert the spring end of the rudder control locking pin into the hole at the top of the pilot's left rudder pedal. - Neutralize the pedals and insert the opposite end of the locking pin into the right pedal by compressing the spring. - Place the elevator and aileron controls in an approximately neutral position. - 4. Insert the elevator-aileron control locking pin into the hole in the control column hanger and the hole in the underside of the control column tube. - 5. Close the throttles and place the throttle lock over the throttle control knobs. To lessen the possibility of taxi or takeoff with the control lock installed, remove the locking components in the following order: rudder, throttle and elevator-aileron. Revised: March 1983 7-17 ## **POWER PLANTS** The BEECHCRAFT BARON 55 and A55 are each powered by two Continental IO-470-L six-cylinder, horizontally opposed, fuel injected engines rated at 260 hp at 2625 rpm. #### POWER PLANT CONTROLS # PROPELLER, THROTTLE, AND MIXTURE The control levers are grouped along the upper face of the control console. Their knobs are shaped so they can be identified by touch. A single controllable friction knob below and to the left of the control levers prevents creeping. #### INDUCTION AIR Induction air is available from filtered ram air or alternate air. Filtered ram air enters from above the engine inside the nacelle area. Should the filter become obstructed, a spring-loaded door on the side of the plenum will open automatically and the induction system will operate on alternate air taken from the nacelle area. #### LUBRICATION SYSTEM The engine oil system for each engine is the full pressure, wet sump type and has a 12-quart capacity. Oil operating temperatures are controlled by an automatic thermostat bypass control. The bypass control will limit oil flow through the oil cooler when operating temperatures are below normal and will permit the oil to bypass the cooler if it should become blocked. 7-18 June 1982 # BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 # Section VII Systems Description The oil system may be checked through access doors in the engine cowling. A calibrated dip stick adjacent to the filler cap indicates the oil level. Due to the canted position of the engines, the dip sticks are calibrated for either right or left engines and are not interchangeable. The oil grades listed in the Approved Engine Oils in the SERVICING section are general recommendations only, and will vary with individual circumstances. The determining factor for choosing the correct grade of oil is the average ambient temperature. #### COWL FLAPS The cowl flap for each engine is controlled by a separate switch located on the pilot's subpanel either to the right (55) or to the left (A55) of the control console. The cowl flap is closed when the switch is in the up position and open when the switch is down. An amber annunciator light adjacent to the cowl flap switches, illuminates when either switch is in the open position. #### PROPELLERS The engines are equipped with two blade, full feathering, constant speed propellers. Springs aided by counter-weights move the blades to high pitch. Engine oil under governor-boosted pressure moves the blades to low pitch. The propellers should be cycled occasionally during cold weather operation. This will help maintain warm oil in the propeller hubs so that the oil will not congeal. 7-20 **FUEL SCHEMATIC** TC-1 thru TC-250, TC-252 thru TC-370, TC-372 thru TC-420 FUEL SCHEMATIC TC-251, TC-421 thru TC-501 #### **FUEL SYSTEM** The standard fuel tank installation consists of a 22-gallon main tank in each wing leading edge and a 31-gallon auxiliary tank in each wing panel outboard of the nacelle, for a total of 106 gallons of usable fuel with all tanks full. The optional fuel tank installation consists of a 37-gallon main tank in each wing leading edge and a 31-gallon auxiliary tank in each wing panel outboard of the nacelle, for a total of 136 gallons of usable fuel with all tanks full. A vapor return line from each injector pump returns excess fuel to the tank from which it is being drawn, during either normal or emergency cross-feed operation. Each tank is filled at its own filler neck through an opening in the upper wing surface covered by a flush type filler cap. The fuel system is drained at eight locations, as shown in the accompanying fuel system schematic. Fuel quantity is measured by float type transmitter units which convey signals to two indicators on the instrument panel. They indicate the amount of fuel in either the main tanks or the auxiliary tanks for their respective wings. A two-position selector switch to the right (55) or left (A55) of the control console, determines the tanks, main or auxiliary, to which the indicators are connected. #### FUEL PRESSURE INDICATOR The fuel pressure indicator registers metered fuel pressure at the fuel injection manifold valve. It does not indicate either engine-driven fuel pump pressure or fuel boost pump pressure. Red radials are placed at the minimum and maximum allowable operating fuel pressures. The green sectors indicate normal operating range. For fuel flow conversions see PERFORMANCE section. 7-22 June 1982 In the cruise power range the green sectors cover the fuel pressure required from 45% to 75% power. The lower edge of each sector is the normal-lean setting and the upper edge is the best power setting for that particular power range. The takeoff and climb range is covered by green sectors for full power at various altitudes. The full power markings represent the maximum performance mixtures for the altitudes shown, permitting leaning of the mixture for maximum power and performance during high altitude takeoffs and full power climbs. #### FUEL CROSSFEED The separate, identical fuel supplies for each engine are interconnected by crossfeed lines. During normal operation each engine uses its own fuel pumps to draw fuel from its respective fuel tank arrangement. However, on emergency crossfeed operations the entire fuel supply of any or all tanks can be consumed by either engine. On TC-181 and after, a mechanical interlock prevents both fuel selector valves being placed on crossfeed at the same time, as this would cut off the fuel supply for both engines. The fuel crossfeed system is provided for use during emergency conditions in level flight only. The system is not to be used to transfer fuel from one tank to another or to balance fuel during flight. The procedure for using the crossfeed system is described in the EMERGENCY PROCEDURES section. #### **FUEL BOOST PUMPS** On TC-1 thru TC-420 except TC-251, an individual electric boost pump for each engine furnishes fuel pressure for starting and provides for near maximum engine performance should the engine-driven pump fail. Due to the in-line location of the boost pumps between the tanks and the selector valves, fuel may be drawn from any tank within the system by the boost pump for the operating engine. 7-24 June 1982 # BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Section VII Systems Description On TC-251, TC-421 and after, an individual two-speed electric fuel boost pump is provided for each engine. HIGH pressure, OFF, or LOW pressure is selected with each fuel boost pump switch on the pilot's subpanel. High pressure is used for stabilizing the fuel pressure before start and provides near maximum engine performance should the engine-driven pump fail. In high ambient temperatures, low pressure should be used for ground operation, takeoff, and climb. The location of the fuel boost pumps in the system permits fuel to be drawn from any tank within the system by the pump for the operating engine. The high pressure position should not be selected while the engine is operating except in the event of engine driven pump failure since the high pressure mode supplies a greater pressure than can be accepted by the injector system for a reduced power condition. #### FUEL REQUIRED FOR FLIGHT Flight planning and fuel loading are facilitated by the use of fuel quantity indicators that have been coordinated with the usable fuel supply. It is the pilot's responsibility to ascertain that the fuel quantity indicators are functioning and maintaining a reasonable degree of accuracy, and be certain of ample fuel for a flight. A minimum of 13 gallons of fuel is required in each main tank before takeoff. An inaccurate indicator could give an erroneous indication of fuel quantity. If the pilot is not sure that at least 13 gallons are in each main tank, add necessary fuel so that the amount of fuel will not be less than 13 gallons per main tank at takeoff. Plan for an ample margin of fuel for any flight. # Section VII Systems Description # BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 7-26 June 1982 #### ELECTRICAL SYSTEM In general, the airplane's circuitry is the single-wire, ground return type. The battery, magneto, starter, and generator switches are located on the left side panel. The Baron 55 has avionic system switches directly in front of the pilot, above the radio panel, and electrical system switches contained on a panel to the right of the control
console. Individual circuit breakers are located along the bottom of each instrument panel. On the Baron A55 a panel to the left of the control console contains most of the electrical system switches and circuit breakers. Each is placarded as to its function. Avionics circuit breakers are located on the right subpanel. #### BATTERY One 17 ampere-hour, 24-volt lead acid battery is standard. Two 25 ampere-hour, 12-volt lead acid batteries, connected in series are offered as options. The battery installation is located beneath the floor of the nose baggage compartment. Battery servicing procedures are described in the SERVICING section. The battery can be turned off in flight and the generators will remain on the line. #### **GENERATORS** Two 25-ampere, 24-volt generators are standard equipment. The generators are belt-driven from the engine accessory section. Two 40-ampere, 24-volt generators are offered as optional equipment. The electrical output of each generator is automatically controlled by an individual voltage regulator and the system paralleling relay. Individual generator output is indicated by two loadmeters on the instrument panel. The power distribution system is protected by circuit breakers. STARTERS (TC-2 thru TC-23) The starters are relay-controlled and are actuated by pushbutton type, momentary-on switches located on the pilot's side panel. To energize the starter circuit, turn the magneto switches ON for the engine to be started and engage the appropriate starter switch. After starting, release the switch. # STARTERS (TC-1, TC-24 and after) The starters are relay-controlled and are actuated by rotary type, momentary-on switches incorporated in the magneto/start switches located on the pilot's side panel. To energize the starter circuit, hold the magneto/start switch in the START position. After starting, release the switch to the BOTH position. #### EXTERNAL POWER The external power receptacle is located in the outboard side of the left nacelle and accepts a standard AN type plug. The power unit should be capable of delivering at least 300 amperes for starting. Before connecting an external power unit, turn the electrical systems and avionics off to avoid damage due to electrical surges. If the unit does not have a standard AN type plug, check the polarity (negative ground) and connect the positive lead from the external power unit to the center post of the airplane's receptacle. The negative lead connects to the other large post. When external power is connected, the battery switch should be turned on. 7-28 June 1982 #### LIGHTING SYSTEM #### INTERIOR LIGHTING ## TC-1 thru TC-190 The cabin dome light is operated by an OFF-ON switch adjacent to the light. Two rheostat switches are located beneath the control console. One switch adjusts the intensity of the overhead instrument flood lights. The other switch regulates the lighting for the electrical panel, avionics panel, and the fuel selector panel, plus the trim tab and mechanical landing gear position indicators. #### TC-191 thru TC-501 The cabin dome light is operated by an OFF-ON switch adjacent to the light. Three rheostat switches are located beneath the control console. One switch adjusts the intensity of the overhead instrument flood lights for all instruments except those directly above the electrical panel. Post lights for these instruments are controlled by the second switch. The third switch regulates the lighting for the electrical panel, avionics panel, and the fuel selector panel, plus the trim tab and mechanical landing gear position indicators. #### EXTERIOR LIGHTING The switches for the navigation lights, landing lights, rotating beacons, nose taxi light, and wing ice light(s) are grouped to the right of the control console (55) or along the top of the pilot's subpanel (A55). The landing lights in the leading edge of each wing tip are operated by separate switches. For longer battery and lamp service life, use the landing lights only when necessary. Avoid prolonged operation, during ground maneuvering, which could cause overheating. At night, reflections from rotating anti-collision lights on clouds, dense haze, or dust can produce optical illusions and vertigo. The use of these lights may not be advisable under instrument or limited VFR conditions. ## HEATING AND VENTILATION SYSTEM #### CABIN HEATING A combustion heater in the nose supplies heated air to the cabin. Outlets are located forward of the pilot and copilot seats, at the rear of the copilot's seat, and at the rear of the right passenger seat. The fifth outlet provides heated air for windshield defrosting. In flight, fresh ram air enters an intake on each side of the nose cone, passes through the heater, and is distributed to the cabin outlets. For ground operation, a blower maintains airflow through the system. If a malfunction resulting in dangerously high temperatures should occur, a thermostat will ground a fuse in the heater power circuit. This renders the heater system, except the blower, inoperative. MAKE CERTAIN ANY MALFUNCTION CAUSING THE OVERHEAT FUSE TO BLOW IS CORRECTED BEFORE ATTEMPTING TO OPERATE THE HEATER AGAIN #### HEATER OPERATION - A two-position switch, placarded CABIN VENT (55) or HEAT & BLOWER (A55), is used to place the heating system in operation. Move the switch to the ON position. - 2. The CABIN AIR T-handle control, which regulates the amount of intake air, is below the left side of the pilot's subpanel. Push the CABIN AIR control full forward. 7-30 June 1982 - Pull out the CABIN HEAT control to the right of the CABIN AIR control to increase the temperature of the heated air. Push the control in to decrease temperature. - 4. For windshield defrosting, push in the DEFROST control. ## HEAT REGULATION For maximum heat, the CABIN AIR control can be pulled partially out to reduce the volume of incoming cold air and permit the heater to raise the temperature of the admitted air. However, if the CABIN AIR control is pulled out more than halfway, the heater will not operate. ## HEATER BLOWER (TC-1 thru TC-190) When the two-position switch on the right subpanel is placed in the CABIN VENT position, the blower will operate if the landing gear is in the extended position and the CABIN AIR control is more than halfway in. The blower will automatically shut off if the landing gear is retracted or the CABIN AIR control is pulled out more than halfway. (TC-191 thru TC-501 except TC-371) When the two-position switch on the pilot's subpanel is placed in the HEAT & BLOWER position, the blower will operate if the landing gear is in the extended position and the CABIN AIR control is more than halfway in. The blower will automatically shut off if the landing gear is retracted or the CABIN AIR control is pulled out more than halfway. HEAT AND VENTILATION SYSTEM SCHEMATIC TC-1 thru TC-190 7-32 June 1982 HEAT AND VENTILATION SYSTEM SCHEMATIC TC-191 thru TC-501 #### CABIN VENTILATION In flight, to provide unheated air for the same cabin outlets used for heating, push the CABIN AIR and CABIN HEAT controls forward. For ventilation during ground operation, push the CABIN AIR control forward and place the two position CABIN VENT (55), HEAT & BLOWER (A55) switch on the subpanel in the ON position. #### **EXHAUST VENTS** The adjustable cabin air exhaust vent is located aft of the radio speaker in the overhead panel. The overhead vent can be closed by a control located in the overhead panel. In addition, a fixed exhaust vent is located below the baggage door. #### INDIVIDUAL FRESH AIR OUTLETS #### Individual Overhead Fresh Air Outlets A manually retractable air scoop on top of the cabin conducts outside air to individual fresh-air outlets in the overhead upholstery panel above each seat. The outlets can be manually adjusted to control both the quantity and direction of air flow. The air scoop may be closed by operating a push-pull control located on the overhead panel. 7-34 June 1982 ## **OXYGEN SYSTEM** #### WARNING Proper safety measures must be employed when using oxygen, or a serious fire hazard will be created. NO SMOKING PERMITTED. ## DESCRIPTION The recommended masks are provided with the system. The masks are designed to be adjustable to fit the average person. The oxygen system is available with either four, five or six outlets and with a 38 or 48 cu ft oxygen cylinder. The oxygen cylinder is located aft of fuselage station 170.0. Supply of oxygen to the system is controlled by a shut-off valve. The pressure indicator shows the supply of oxygen available (1850 psi is nominal pressure for a full supply in the cylinder). The oxygen system is altitude compensated, therefore, flow is automatically varied to supply a higher oxygen flow at higher altitudes than at lower altitudes. The use of oxygen is recommended to be in accordance with current FAR operating rules. ## PITOT AND STATIC SYSTEM The pitot and static system provides a source of impact and static air for the operation of flight instruments. ## PITOT SYSTEM A standard pitot tube for the pilot's flight instruments is located under the left wing and the optional pitot tube for the copilot's instruments is located under the right wing. A pitot heat switch, located on the instrument panel, supplies heat to the left and right pitot masts. The pitot system needs no drain because of the location of the components. ## NORMAL STATIC SYSTEM Static air is taken from a flush static port located on each side of the aft fuselage. The static air is routed to the rate-of-climb indicator, altimeter and airspeed indicator. To drain the static air line, remove one end of the hose which forms the static air line drain on the left side panel near the aft bulkhead and permit the system to drain. # ALTERNATE (EMERGENCY) STATIC SYSTEM The alternate static air source is designed to provide a source of static pressure to the instruments from inside the fuselage should the outside static air ports become blocked. An abnormal reading
of the instruments supplied with static air could indicate a restriction in the outside static air ports. A lever on the lower sidewall adjacent to the pilot, selects the normal or alternate static air source. When it is desired or required to use this alternate source of static air, select the ON position. To recognize the need and procedures for the use of alternate static air, refer to EMERGENCY PROCEDURES. Airspeed Calibrations and Altimeter Corrections charts are in the PERFORMANCE section. 7-36 June 1982 #### VACUUM SYSTEM Suction for the vacuum-operated gyroscopic flight instruments is supplied by two engine-driven vacuum pumps, interconnected to form a single system. If either pump fails, check valves automatically close and the remaining pump continues to operate all gyro instruments. A suction gage on the instrument panel indicates the amount of suction in the vacuum system in inches of mercury. #### STALL WARNING A stall warning indicator flashes a red light on the instrument panel (55) or sounds a warning (55, A55) as the airplane approaches a stall condition. The stall warning indicator is triggered by a sensing vane on the leading edge of the left wing. Irregular and intermittent at first, the warning signal will become steady as the airplane approaches a complete stall. #### NOTE Stall warning horn is inoperative when the Battery and Generator Switches are turned off. Airplane certification requires the stall warning system to be on during flight except in emergency conditions as stated in Section III. In icing conditions, stalling airspeeds should be expected to increase due to the distortion of the wing airfoil when ice has accumulated on the airplane. For the same reason, stall warning devices tend to lose their accuracy. The sensing vane is installed on a plate that can be electrically heated, preventing ice from forming on the vane of the transducer. A switch on the instrument panel, placarded PITOT HEAT, supplies power to the heated pitot mast and to the heating plate at the stall warning transducer. However, any accumulation of ice in the proximity of the stall warning vane reduces the probability of accuracy in the stall warning system whether or not the vane itself is clear of ice. For this reason, it is advisable to maintain an extra margin of airspeed above the stall speed. ### ICE PROTECTION SYSTEMS The wing ice light(s), used to check for ice accumulation during night operation, illuminates the wing leading edge. The light switch is on the pilot's subpanel. ### PROPELLER ANTI-ICE SYSTEM (FLUID FLOW) The system is designed to prevent the formation of ice. Always place the system in operation before encountering icing conditions. ice is prevented from forming on the propeller blades by wetting the blade anti-ice boots with anti-icing fluid. The anti-ice pump delivers a constant flow of fluid from the supply tank to the blade boots. The pump is controlled by an ON-OFF switch located to the right of the console (55) or on the pilot's subpanel (A55). With a full reservoir, system endurance is approximately 120 minutes. ### ELECTROTHERMAL PROPELLER DEICE (2 BLADES) Propeller ice removal is accomplished by the electrically heated deice boots bonded to each propeller blade. The system uses the airplane electrical power to heat portions of the deice boots in a sequence controlled by a timer. The system is controlled by an ON-OFF switch on the pilot's 7-38 June 1982 # Section VII Systems Description subpanel. When the system is turned on the ammeter will register 7 to 12 amperes. The system can be operated continuously in flight; it will function automatically until the switch is turned off. Propeller imbalance can be relieved by varying rpm. Increase rpm briefly, then return to the desired setting. Repeat if necessary. ### CAUTION Do not operate the system with the engines inoperatve. ### PITOT HEAT Heating elements are installed in the pitot mast(s). Both heating elements are controlled by an individual switch located on the right side (55) or left side (A55) of the subpanel. The switch is placarded PITOT HEAT, and should remain off during ground operations, except for testing or for short intervals of time to remove ice or snow from the mast(s). ### STALL WARNING ANTI-ICE (Optional) The mounting pad and the stall warning vane are equipped with a heating element that is activated any time the switch placarded PITOT HEAT, is on. ### ENGINE BREAK-IN INFORMATION Use a straight mineral oil as recommended by the engine manufacturer throughout the break-in period. Drain the initial oil at 20 to 30 hours, replace with new mineral oil which is to be used until oil consumption stabilizes, usually a total of about 50 hours. June 1982 7-39 Drain and replace the engine oil as recommended in HANDLING, SERVICING AND MAINTENANCE. If operating conditions are unusually dusty or dirty, more frequent oil changes may be necessary. Oil changes are more critical during the break-in period than at any other time. Use full throttle at recommended rpm for every take-off and maintain until at least 400 feet AGL, then reduce as necessary for cruise climb or cruise. Maintain the highest power recommended for cruise operations during the break-in period, avoiding altitudes above 8000 feet. Interrupt cruise power every 30 minutes or so by smoothly advancing to take-off power settings for about 30 seconds, then returning to cruise power settings. Avoid long power-off descents especially during the breakin period. Maintain sufficient power during descent to permit cylinder head temperatures to remain in the green arc. Minimize ground operation time, especially during warm weather. During the break-in period, avoid engine idling in excess of 15 minutes, especially in high ambient temperatures. 7-40 June 1982 # **SECTION VI** # WEIGHT AND BALANCE/ EQUIPMENT LIST ### **TABLE OF CONTENTS** | SUBJECT PA | IGE | |--|-----| | Weighing Instructions | 6-3 | | Basic Empty Weight and Balance Form | 6-5 | | | 6-7 | | Loading Instructions | 6-9 | | Seating, Baggage and Equipment | | | | -10 | | Moment Limits vs Weight Table 6-11 - 6 | -13 | | - | -14 | | - · · · · · · · · · · · · · · · · · · · | -15 | | • | -17 | | . • | -18 | | Useful Load Weights and Moments 6-19 - 6 | -23 | | <u> </u> | -19 | | • | -20 | | Cargo 6-21 - 6 | -22 | | Usable Fuel 6 | | | Oil | | | Airplane Papers (furnished with individual airplane) | | June 1982 6-1 # INTENTIONALLY LEFT BLANK 6-2 June 1982 ### WEIGHING INSTRUCTIONS Periodic weighing of the airplane may be required to keep the Basic Empty Weight current. All changes to the airplane affecting weight and balance are the responsibility of the airplane's operator. - 1. Three jack points are provided for weighing: two on the wing front spar at Fuselage Station 83.1 and one on the aft fuselage at Fuselage Station 271.0. - 2. Fuel should be drained preparatory to weighing. Tanks are drained from the regular drain ports with the airplane in static ground attitude. When tanks are drained, 5.7 pounds of undrainable fuel remain in the airplane at Fuselage Station 81.6. The remainder of the unusable fuel to be added to a drained system is 35.3 pounds at Fuselage Station 78.6 - 3. Engine oil must be at the full level or completely drained. Total engine oil when full is 45 pounds at Fuselage Station 43. - 4. To determine airplane configuration at time of weighing, installed equipment is checked against the airplane equipment list or superseding forms. All installed equipment must be in its proper place during weighing. - 5. The airplane must be in a longitudinally level attitude at the time of weighing. Leveling screws are located on the left side of the fuselage at Fuselage Station 152.25 (approximately). Level attitude is determined with a plumb bob. - 6. Measurement of the reaction arms for a wheel weighing is made using a steel measuring tape. Measurements are taken, with the airplane level on the scales, from the reference (a plumb bob dropped from the center of either main jack point) to the axle June 1982 6-3 center line of the main gear and then to the nose wheel axle center line. The main wheel axle center line is best located by stretching a string across from one main wheel to the other. All measurements are to be taken with the tape level with the hangar floor and parallel to the fuselage center line. The locations of the wheel reactions will be approximately at Fuselage Station 96.7 for main wheels and Fuselage Station 12.7 for the nose wheel. - 7. Jack point weighings are accomplished by placing scales at the jack points specified in step 1 above. Since the center of gravity of the airplane is forward of Fuselage Station 83.1, the tail reaction of the airplane will be in an up direction. This can be measured on regular scales by placing ballast of approximately 200 pounds on the scales and attached to the aft weighing point by cable of adjustable length. The up reaction will then be total ballast weight minus the scale reading and is entered in the weighing form as a negative quantity. - 8. Weighing should always be made in an enclosed area which is free from air currents. The scales used should be properly calibrated and certified. 6-5 | BARON SER. NO | | REG. NO | | DATE | | | |---|------------------|------------|------------|--------|--------|--| | STRUT POSITION - NOS | E MAIN | JACK POINT | LOCATION | PREPAR | ED BY | | | EXTENDED 11. | 8 9 6 | FORWAR | D 83.1 Com | ipany | | | | COMPRESSED 13. | 1 97 | AFT | 271.0 Sign | ature | | | | REACTION | SCAL | E | NET | | | | | WHEEL - JACK POINTS | READII | NG TARE | WEIGHT | ARM | MOMENT | | | LEFT MAIN | | [| | | | | | RIGHT MAIN | | |) | 1 | | | | NOSE OR TAIL | | i | | | | | | TOTAL (AS WEIGHED) | 1 | | | |) | | | Space below provided for additions and subtractions to as weighed condition | | | | |
 | | EMPTY WEIGHT (DRY) | | | | T | | | | ENGINE OIL | | | 45 | - | 1935 | | | UNUSABLE FUEL | | | 41 | 79 | 3239 | | | BASIC EMPTY WEIGHT | | | | 1 | | | **BASIC EMPTY WEIGHT AND BALANCE** ### NOTE Each new airplane is delivered with a completed sample loading, empty weight and center of gravity, and equipment list, all pertinent to that specific airplane. It is the owner's responsibility to ensure that changes in equipment are reflected in a new weight and balance and in an addendum to the equipment list. There are many ways of doing this; it is suggested that a running tally of equipment changes and their effect on empty weight and c.g. is a suitable means for meeting both requirements. The current equipment list and empty weight and c.g. information must be retained with the airplane when it changes ownership. Beech Aircraft Corporation cannot maintain this information; the current status is known only to the owner. If these papers become lost, the FAA will require that the airplane be reweighed to establish the empty weight and c.g. and that an inventory of installed equipment be conducted to create a new equipment list. 6-6 June 1982 # WEIGHT AND BALANCE RECORD REGISTRATION NO. | SERIAL I | NO | | REGISTRATION NO. PAG | | | GE NO | | | |----------|-------------|----------|------------------------|-----------------|--------------|-------------------|---------------|-------------| | DATE | | NO. | DESCRIPTION OF ARTICLE | WE | GHT CHA | | RUNNING BASIC | | | | IN | OUT | OR CHANGE | WT
(LBS) | ARM
(IN.) | <u>MOM</u>
100 | WT
(LBS) | MOM
100 | | | | | | · · · · · · · · | <u> </u> | | · | · | | - | | <u> </u> | | <u> </u> | | | | | | | | | | | | | | | | | - | | | | | | | | | | | <u> </u> | <u> </u> | | <u> </u> | | | <u> </u> | June 1982 ### **WEIGHT AND BALANCE RECORD** | SERIAL I | NO | | REGISTRATION | I NO | | PA | GE NO: _ | 2 | |---------------|------|----------|------------------------|-------------|---------------|-------------------|--|---------------| | DATE | ITEN | I NO. | DESCRIPTION OF ARTICLE | WE | WEIGHT CHANGE | | | RUNNING BASIC | | | IN | OUT | OR CHANGE | WT
(LBS) | ARM
(IN.) | <u>MOM</u>
100 | WT
(LBS) | MOM
100 | | | | | | <u> </u> | | | |
 | | ļ | | | | | | · · | | | | | | | | | | | | | | | | | | <u> </u> | <u> </u> | | <u> </u> | <u> </u> | <u> </u> | <u> </u> | | <u> </u> | <u> </u> | # Section VI Wt and Bal/Equip List ### LOADING INSTRUCTIONS It is the responsibility of the airplane operator to ensure that the airplane is properly loaded. At the time of delivery, Beech Aircraft Corporation provides the necessary weight and balance data to compute individual loadings. All subsequent changes in airplane weight and balance are the responsibility of the airplane owner and/or operator. The empty weight and moment of the airplane at the time of delivery are shown on the airplane Empty Weight and Balance form. Useful load items which may be loaded into the airplane are shown on the Useful Load Weight and Moment tables. The minimum and maximum moments are indicated on the Moment Limits vs Weight table. These moments correspond to the forward and aft center of gravity flight limits for a particular weight. All moments are divided by 100 to simplify computations. June 1982 6-9 # SEATING, BAGGAGE AND EQUIPMENT ARRANGEMENTS ### NOTE The floor structure load limit is 100 pounds per square foot, except for the area between the front and rear spars, where the floor structure load limit is 50 pounds per square foot. - 1. MAXIMUM WEIGHT 270 POUNDS INCLUDING EQUIPMENT AND BAGGAGE. - 2. MAXIMUM WEIGHT 120 POUNDS INCLUDING EQUIPMENT AND BAGGAGE. - 3.*MAXIMUM WEIGHT 400 POUNDS INCLUDING EQUIPMENT AND BAGGAGE WITH 5th and 6th SEATS REMOVED OR STOWED. - 4. MAXIMUM WEIGHT 200 POUNDS FORWARD OF REAR SPAR INCLUDING EQUIPMENT AND CARGO WITH 3rd and 4th SEATS REMOVED. - 5.*MAXIMUM WEIGHT 400 POUNDS AFT OF REAR SPAR INCLUDING EQUIPMENT AND CARGO WITH 3rd, 4th, 5th and 6th SEATS REMOVED. ALL CARGO MUST BE SECURED WITH APPROVED CARGO RETENTION SYSTEMS. *Refer to PLACARDS in LIMITATIONS Section. 6-10 June 1982 # MOMENT LIMITS vs WEIGHT Moment limits are based on the following weight and center of gravity limit data (landing gear down). | WEIGHT
CONDITION | | AFT CG LIMIT | |--|--|--| | 4880 lb.
(max.take-off
or landing) | 79.4 | 86.0 | | 3800 lb. or les | s 74.0 | 86.0 | | Weight | Minimum
<u>Moment</u>
100 | Maximum
<u>Moment</u>
100 | | 3200
3225
3250
3275
3300
3325
3350
3375
3400
3425
3450
3475
3500
3525 | 2368
2387
2405
2424
2442
2461
2479
2498
2516
2535
2572
2590
2609 | 2752
2774
2795
2817
2838
2860
2881
2903
2924
2946
2946
2967
2989
3010
3032 | | 3550
3575 | 2627
2646 | 3053
3075 | June 1982 6-11 # MOMENT LIMITS vs WEIGHT (Continued) | Weight | Minimum
Moment
100 | Maximum Moment 100 | |--------|--------------------------|--------------------| | 3600 | 2664 | 3096 | | 3625 | 2683 | 3118 | | 3650 | 2701 | 3139 | | 3675 | 2720 | 3161 | | 3700 | 2738 | 3182 | | 3725 | 2757 | 3204 | | 3750 | 2775 | 3225 | | 3775 | 2794 | 3247 | | 3800 | 2812 | 3268 | | 3825 | 2836 | 3290 | | 3850 | 2859 | 3311 | | 3875 | 2882 | 3333 | | 3900 | 2906 | 3354 | | 3925 | 2929 | 3376 | | 3950 | 2953 | 3397 | | 3975 | 2976 | 3419 | | 4000 | 3000 | 3440 | | 4025 | 3024 | 3462 | | 4050 | 3048 | 3483 | | 4075 | 3072 | 3505 | | 4100 | 3096 | 3526 | | 4125 | 3120 | 3548 | | 4150 | 3144 | 3569 | | 4175 | 3168 | 3591 | | 4200 | 3192 | 3612 | | 4225 | 3216 | 3634 | | 4250 | 3241 | 3655 | | 4275 | 3265 | 3677 | # MOMENT LIMITS vs WEIGHT (Continued) | Weight | Minimum
<u>Moment</u>
100 | Maximum
<u>Moment</u>
100 | |--------|---------------------------------|---------------------------------| | 4300 | 3290 | 3698 | | 4325 | 3314 | 3720 | | 4350 | 3339 | 3741 | | 4375 | 3363 | 3763 | | 4400 | 3388 | 3784 | | 4425 | 3413 | 3806 | | 4450 | 3438 | 3827 | | 4475 | 3463 | 3849 | | 4500 | 3488 | 3870 | | 4525 | 3513 | 3892 | | 4550 | 3538 | 3913 | | 4575 | 3563 | 3935 | | 4600 | 3588 | 3956 | | 4625 | 3613 | 3978 | | 4650 | 3639 | 3999 | | 4675 | 3664 | 4021 | | 4700 | 3690 | 4042 | | 4725 | 3715 | 4064 | | 4750 | 3741 | 4085 | | 4775 | 3766 | 4107 | | 4800 | 3792 | 4128 | | 4825 | 3818 | 4150 | | 4850 | 3844 | 4171 | | 4875 | 3870 | 4193 | | 4880 | 3875 | 4197 | | | | | Baron 55 and A55 | WEIGHT CONDITION | FORWARD CG. LIMIT | AFT CG. LIMIT | |-----------------------------------|-------------------|---------------| | 4880 LB (MAX TAKE-OFF OR LANDING) | 79.4 | 86 0 | | 3800 LB or LESS | 74 0 | 86 0 | CENTER OF GRAVITY LIMIT DATA (LANDING GEAR DOWN) 6-14 June 1982 ### COMPUTING PROCEDURE - Record the *Basic Empty Weight and Moment from the Basic Empty Weight and Balance form (or from the latest superseding form) under the Basic Empty Condition block. The moment must be divided by 100 to correspond to Useful Load Weights and Moments tables. - 2. Record the weight and corresponding moment from the appropriate table of each of the useful load items (except fuel) to be carried in the airplane. - 3. Total the weight column and moment column. The SUB-TOTAL is the Zero Fuel Condition. - 4. Determine the weight and corresponding moment for the fuel loading to be used. This fuel loading includes fuel for the flight, plus that required for start, taxi, and take-off. Add the Fuel to Zero Fuel Condition to obtain the SUB-TOTAL Ramp Condition. - 5. Subtract the fuel to be used for start and taxi to arrive at the SUB-TOTAL Take-off Condition. - 6. Subtract the weight and moment of the fuel in the incremental sequence in which it is to be used from the take-off weight and moment. The Zero Fuel Condition, the Take-Off Condition, and the Landing Condition moment must be within the minimum and maximum moments shown on the Moment Limit vs Weight table for that weight. If the total moment is less than the June 1982 6-15 # Section VI Wt and Bal/Equip List # BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 minimum moment allowed, useful load items must be shifted aft or forward load items reduced. If the total moment is greater than the maximum moment allowed, useful load items must be shifted forward or aft load items reduced. If the quantity or location of load items is changed, the calculations must be revised and the moments rechecked. * The Empty Weight (Dry) for the airplane may be converted to Basic Empty Weight by adding the weight and moment for full oil (45 lbs. and 1935 lb. in.) and unusable fuel (41 lbs. and 3239 lb. in.). The following Sample Loading chart is presented to depict the sample method of computing a load. Weights used DO NOT reflect an actual airplane loading. 6-16 June 1982 # WEIGHT AND BALANCE LOADING FORM | BARON | 5 | 5 | DATE | | |--------------|-----|---------|---------|------| | SERIAL | NO. | TC-XXXX | REG NO. | NXXX | | DETITAL ITO | | - | |--|------------|------------| | ITEM | WEIGHT | MOM/100 | | 1. BASIC EMPTY CONDITION | 3277 | 2531 | | 2. FRONT SEAT OCCUPANTS | 340 | 290 | | 3. 3rd and 4th SEAT OCCUPANTS | 340 | 412 | | 4. 5th and 6th SEAT OCCUPANTS 5. NOSE BAGGAGE 6. REAR BAGGAGE 7. AFT BAGGAGE | L | - | | 5. NOSE BAGGAGE | 2 | - | | 6. REAR BAGGAGE | 128 | 192 | | 7. AFT BAGGAGE | <u>-</u> | ·
-
 | | 8. CARGO | - | - |
 9. SUB TOTAL ZERO FUEL CONDITION | 4085 | 3425 | | 10. FUEL - MAIN (74 GAL)
FUEL - AUX (62 GAL) | 444
372 | 333
346 | | 11. SUB TOTAL
RAMP CONDITION | 4901 | 4104 | | 12. *LESS FUEL FOR START,
TAXI, AND TAKE-OFF | -21 | -16 | | 13. SUB TOTAL
TAKE-OFF CONDITION | 4880 | 4088 | | 14. LESS FUEL - MAIN
(20 GAL) | -120 | -90 | | 15. SUB TOTAL | 4760 | 3998 | | 16. LESS FUEL - AUX
(62 GAL) | -372 | -346 | | 17. SUB TOTAL | 4388 | 3652 | | 18. LESS FUEL - MAIN
(30 GAL) | -180 | -135 | | 19. LANDING CONDITION | 4208 | 3517 | | | | | ^{*}Fuel for start, taxi and take-off is normally 21 lbs at an average mom/100 of 16. # WEIGHT AND BALANCE LOADING FORM | BARON | DATE | | |------------|--------|------| | SERIAL NO. | REG NO | NXXX | | JENIAL NO. | 1120 140 | | |---|----------|---------| | ITEM | WEIGHT | MOM/100 | | 1. BASIC EMPTY CONDITION | | | | 2. FRONT SEAT OCCUPANTS | | | | 3. 3rd and 4th SEAT OCCUPANTS | | _ | | 4. 5th and 6th SEAT OCCUPANTS | | | | 5. NOSE BAGGAGE | | | | 6. REAR BAGGAGE | | | | 7. AFT BAGGAGE | | | | 8. CARGO | | , | | 9. SUB TOTAL ZERO FUEL CONDITION | | | | 10. FUEL - MAIN (GAL)
FUEL - AUX (GAL) | | | | 11. SUB TOTAL RAMP CONDITION | | | | 12. *LESS FUEL FOR START,
TAXI, AND TAKE-OFF | | | | 13. SUB TOTAL
TAKE-OFF CONDITION | | | | 14. LESS FUEL - MAIN
(GAL) | i | • | | 15. SUB TOTAL | | | | 16. LESS FUEL - AUX
(GAL) | | | | 17. SUB TOTAL | | | | 18. LESS FUEL - MAIN
(GAL) | | | | 19. LANDING CONDITION | _ | | ^{*}Fuel for start, taxi and take-off is normally 21 lbs at an average mom/100 of 16. 6-18 June 1982 Section VI Wt and Bal/Equip List ### **USEFUL LOAD WEIGHTS AND MOMENTS** ### **OCCUPANTS** | | Front | Seats | 3rd and 4th Seats | | | |----------|-----------------|-----------------|-------------------|-----------------|----------------------| | | Fwd
Position | Aft
Position | Fwd
Position | Aft
Position | 5th and 6th
Seats | | WEIGHT | ARM 85 | ARM 89 | ARM 121 | ARM 136 | ARM 154 | | <u>-</u> | | | MOM/100 | | | | 120 | 102 | 107 | 145 | 163 | 185 | | 130 | 110 | 116 | 157 | 177 | 200 | | 140 | 119 | 125 | 169 | 190 | 216 | | 150 | 128 | 134 | 182 | 204 | 231 | | 160 | 136 | 142 | 194 | 218 | 246 | | 170 | 144 | 151 | 206 | 231 | 262 | | 180 | 153 | 160 | 218 | 245 | 277 | | 190 | 162 | 169 | 230 | 258 | 293 | | 200 | 170 | 178 | 242 | 272 | 308 | NOTE: OCCUPANT POSITIONS SHOWN ARE FOR THE SEATS ADJUSTED THE MAXIMUM RANGE. INTERMEDIATE POSITIONS WILL REQUIRE INTERPOLATION OF THE MOMENT/100 VALUES. | | | BAGGAGE | | |---|--|---|---| | | NOSE | REAR | AFT | | Weight | СОМРТ | FS 131 TO 170 | FS 170 TO 190 | | , | ARM 31 | ARM 150 | ARM 180 | | | Mom/100 | Mom/100 | Mom/100 | | 10
20
30
40
50
60
70
80
90
100 | 3
6
9
12
16
19
22
25
28
31 | 15
30
45
60
75
90
105
120
135
150 | 18
36
54
72
90
108
126
144
162
180 | | 110
120
130
140
150
160
170
180
190
200 | 34
37
40
43
47
50
53
56
59
62 | 165
180
195
210
225
240
255
270
285
300 | 198
216 | | 220
240
260
270
280
300
320
340
360
380
400 | 68
74
81
84 | 330
360
390
405
420
450
480
510
540
570
600 | | # Section VI Wt and Bal/Equip List # CARGO FWD OF SPAR (CENTER SEATS REMOVED) ARM 108 | Weight | Moment
100 | Weight | Moment
100 | |--------|---------------|--------|---------------| | 10 | 11 | 110 | 119 | | 20 | 22 | 120 | 130 | | 30 | 32 | 130 | 140 | | 40 | 43 | 140 | 151 | | 50 | 54 | 150 | 162 | | 60 | 65 | 160 | 173 | | 70 | 76 | 170 | 184 | | 80 | 86 | 180 | 194 | | 90 | 97 | 190 | 205 | | 100 | 108 | 200 | 216 | June 1982 6-21 # CARGO AFT OF SPAR (CENTER & AFT SEATS REMOVED) ARM 145 | Weight | Moment
100 | Weight | Moment
100 | |--------|---------------|--------|---------------| | 10 | 15 | 210 | 305 | | 20 | 29 | 220 | 319 | | 30 | 44 | 230 | 334 | | 40 | 58 | 240 | 348 | | 50 | 73 | 250 | 363 | | 60 | 87 | 260 | 377 | | 70 | 102 | 270 | 392 | | 80 | 116 | 280 | 406 | | 90 | 131 | 290 | 421 | | 100 | 145 | 300 | 435 | | 110 | 160 | 310 | 450 | | 120 | 174 | 320 | 464 | | 130 | 189 | 330 | 479 | | 140 | 203 | 340 | 493 | | 150 | 218 | 350 | 508 | | 160 | 232 | 360 | 522 | | 170 | 247 | 370 | 537 | | 180 | 261 | 380 | 551 | | 190 | 276 | 390 | 566 | | 200 | 290 | 400 | 580 | | | | | | 6-22 June 1982 ### **USABLE FUEL** | | | MAIN
WING TANKS
ARM 75 | AUX
WING TANKS
ARM 93 | |---------|--------|------------------------------|-----------------------------| | Gallons | Weight | Mom | /100 | | 5 | 30 | 23 | 28 | | 10 | 60 | 45 | 56 | | 15 | 90 | 68 | 84 | | 20 | 120 | 90 | 112 | | 25 | 150 | 113 | 140 | | 30 | 180 | 135 | 167 | | 35 | 210 | 158 | 195 | | 40 | 240 | 180 | 223 | | 44 | 264 | 198 | | | 45 | 270 | 203 | 251 | | 50 | 300 | 225 | 279 | | 55 | 330 | 248 | 307 | | 60 | 360 | 270 | 335 | | 62 | 372 |] | 346 | | 65 | 390 | 293 | | | 70 | 420 | 315 | } | | 74 | 444 | 333 | | *OIL | Quarts | Weight | Moment
100 | |--------|--------|---------------| | 24 | 45 | 19 | ^{*}Included in Basic Empty Weight # INTENTIONALLY LEFT BLANK 6-24 June 1982 # **SECTION V** # **PERFORMANCE** # **TABLE OF CONTENTS** | SUBJECT | PAGE | |--|-------| | Introduction to Performance and | | | Flight Planning | . 5-3 | | Conditions 5-3 - | 5-13 | | Comments Pertinent to the Use of | | | Performance Graphs | 5-14 | | Performance Graphs 5-15 - | 5-47 | | Airspeed Calibration - Normal System | 5-15 | | Airspeed Calibration - Alternate System | 5-16 | | Altimeter Correction - Normal System | 5-17 | | Altimeter Correction - Alternate System | 5-18 | | Temperature Conversion | 5-19 | | ISA Conversion | 5-20 | | Manifold Pressure vs RPM | 5-21 | | Take-Off Weight | 5-22 | | Stall Speeds - Power Idle | 5-23 | | Wind Components | 5-24 | | Take-Off Distance | 5-25 | | Accelerate - Stop Distance | 5-26 | | Accelerate - Go Distance | 5-27 | | Climb - Two Engine | 5-28 | | Take-Off Climb Gradient, One | | | Engine Inoperative | 5-29 | | Time, Fuel, Distance to Climb | 5-30 | | Climb - One Engine Inoperative | 5-31 | | Service Ceiling - One Engine Inoperative | 5-32 | | June 1982 | 5-1 | # **TABLE OF CONTENTS (Continued)** | SUBJECT | PAGE | |------------------------------------|--------| | Cruise Speeds | 5-33 | | Fuel Flow vs Brake Horsepower | 5-34 | | Fuel Flow vs Fuel Pressure | 5-35 | | Cruise Power Settings 5-36 | 5-5-39 | | Maximum Cruise Power | 5-36 | | Recommended Cruise Power | 5-37 | | Recommended Cruise Power | 5-38 | | Economy Cruise Power | 5-39 | | Range Profile - 106 Gallons | 5-40 | | Endurance Profile - 106 Gallons | 5-41 | | Range Profile - 136 Gallons | 5-42 | | Endurance Profile - 136 Gallons | 5-43 | | Holding Time | 5-44 | | Time, Fuel and Distance to Descend | 5-45 | | Climb - Balked Landing | 5-46 | | Landing Distance | 5-47 | 5-2 June 1982 # INTRODUCTION TO PERFORMANCE AND FLIGHT PLANNING All airspeeds quoted in this section are indicated airspeeds (IAS) except as noted and assume zero instrument error. The graphs and tables in this section present performance information for takeoff, climb, landing and flight planning at various parameters of weight, power, altitude, and temperature. FAA approved performance information is included in this section. Examples are presented on all performance graphs. In addition, the calculations for flight time, block speed, and fuel required are presented using the conditions listed. ### CONDITIONS ### At Denver: | Outside Air Temperature | 15°C (59°F) | |-------------------------|--------------| | Field Elevation | 5330 ft | | Altimeter Setting | 29.60 in. Hg | | Wind 27 | 0° at 10 kts | | Runway 26L length | 10,010 ft | Route of Trip *DEN-V81-AMA June 1982 5-3 For VFR Cruise at 11,500 feet: | ROUTE
SEGMENT | MAGNETIC
COURSE | DIST
NM | WIND
11500
FEET
DIR/KTS | OAT
11500
FEET
°C | ALT
SETTING
IN.HG | |------------------|--------------------|------------|----------------------------------|----------------------------|-------------------------| | DEN-COS | 161° | 55 | 010/30 | -5 | 29.60 | | COS-PUB | 153° | 40 | 010/30 | -5 | 29.60 | | PUB-TBE | 134° | 74 | 100/20 | 0 | 29.56 | | TBE-DHT | 132° | 87 | 200/20 | 9 | 29.56 | | DHT-AMA | 125° | 65 | 200/20 | 10 | 29.56 | ^{*}REFERENCE: Enroute Low Altitude Chart L-6 ### At Amarillo: | Outside Air Temperature | 25°C (77°F) | |-------------------------|---------------| | Field Elevation | 3605 ft | | Altimeter Setting | 29.56 in. Hg | | Wind 18 | 80° at 10 kts | | Runway 21 Length | 10,000 ft | To determine pressure altitude at origin and destination airports, add 100 feet to field elevation for each .1 in. Hg below 29.92, and subtract 100 feet from field elevation for each .1 in. Hg above 29.92. ### Pressure Altitude at DEN: $$29.92 - 29.60 = .32$$ in. Hg The pressure altitude at DEN is 320 feet above the field elevation. $$5330 + 320 = 5650 \text{ ft}$$ Section V Performance Pressure Altitude at AMA: $$29.92 - 29.56 = .36$$ in. Hg The pressure altitude at AMA is 360 feet above the field elevation. ### NOTE For flight planning, the difference between cruise altitude and cruise pressure altitude has been ignored. Maximum Allowable Take-off Weight = 4880 lbs Ramp Weight = $$4880 + 21 = 4901$$ lbs ### NOTE Fuel for start, taxi and take-off is normally 21 pounds. Enter the Take-Off Weight graph at 5650 feet pressure altitude and 15°C. The take-off weight to achieve a positive rate-of-climb at lift-off for one engine inoperative is: Take-off Weight = 4550
pounds ## Section V Performance # BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Enter the Take-Off Distance graph at 15°C, 5650 feet pressure altitude, 4880 pounds, and 9.5 knots headwind component. | Ground Rolf | 1925 ft | |------------------------------------|---------| | Total Distance over 50 ft Obstacle | 2950 ft | | Lift-off Speed 84 kts (| 97 mph) | | 50 Foot Speed 91 kts (1) | 05 mph) | Enter the Accelerate-Stop graph at 15°C, 5650 feet pressure altitude, 4880 pounds, and 9.5 knots headwind component: | Accelerate-Stop Distance | 4030 ft | |--------------------------|-----------------| | Engine Failure Speed | 84 kts (97 mph) | ### NOTE Since 4030 feet is less than the available field length (10,010 ft), the accelerate-stop procedure can be performed at any weight. Take-off at 4880 lbs can be accomplished. However, if an engine failure occurs before becoming airborne, the accelerate-stop procedure must be performed. 5-6 June 1982 Section V Performance The following example assumes the airplane is loaded so that the take-off weight is 4550 pounds. Although not required by regulations, information has been presented to determine the take-off weight, field requirements and take-off flight path assuming an engine failure occurs during the take-off procedure. The following illustrates the use of these charts. Enter the Accelerate-Go graph at 15°C, 5650 feet pressure altitude, 4550 pounds, and 9.5 knots headwind component: | Ground Roll | 1800 ft | |------------------------------------|--------------| | Total Distance Over 50 ft Obstacle | 7100 ft | | Lift-off Speed 84 | kts (97 mph) | | 50 Foot Speed 91 kt | ts (105 mph) | Enter the graph for Take-off Climb Gradient - One Engine Inoperative at 15°C, 5650 feet pressure altitude, and 4550 pounds. | Climb Gradient |
 |
 |
 |
 |
 | | | 1.3% | |----------------|------|------|------|------|------|-----|------|------| | Climb Speed |
 |
 |
 |
 | 91 | kts | (105 | mph) | A 1.3% climb gradient is 13 feet of vertical height per 1000 feet of horizontal distance. ### NOTE The Climb Gradient - One Engine Inoperative graph assumes zero wind conditions. Climbing into a headwind will result in higher angles of climb, and hence, better obstacle clearance capabilities. Calculation of horizontal distance to clear an obstacle 90 feet above the runway surface: Horizontal distance used to climb from 50 feet to 90 feet = $(90-50) (1000 \div 13) = 3077$ feet Total Distance = 7100 + 3077 = 10,177 feet The above results are illustrated below: - 1) Accelerate-go take-off distance = 7100 feet - 2 Distance to climb from 50 ft, to 90 ft above runway = 3077 feet - Accelerate-stop distance for 4880 lbs. take-off weight = 4030 feet The following calculations provide information for the flight planning procedure. All examples are presented on the performance graphs. A take-off weight of 4880 pounds has been assumed. Enter the Time, Fuel, and Distance to Climb graph at 15°C to 5650 feet and to 4880 pounds. Also enter at -5°C to 11,500 feet and to 4880 pounds. Read: Time to Climb = (12.5-5) = 7.5 min Fuel Used to Climb = (7.3-3) = 4.3 gal Distance Traveled = (28-10) = 18 NM The temperatures for cruise are presented for a standard day (ISA); 20°C (36°F) above a standard day (ISA + 20°C); and 20°C (36°F) below a standard day (ISA - 20°C). These should be used for flight planning. The IOAT values are true temperature values which have been adjusted for the compressibility effects. IOAT should be used for setting cruise power while enroute. Enter the graph for ISA conversion at 11,500 feet and the temperature for the route segment: | DEN-PUB | OAT
ISA Condition | == | -5°C
ISA + 3°C | |---------|----------------------|---|--------------------| | PUB-TBE | OAT
ISA Condition | ======================================= | 0°C
ISA + 8°C | | TBE-DHT | OAT
ISA Condition | = | 9°C
ISA + 17°C | | DHT-AMA | OAT
ISA Condition | = | 10°C
ISA + 18°C | Enter the table for Recommended Cruise Power - 24 in. Hg (or Full Throttle) 2300 rpm at 10,000 ft, 12,000 ft, ISA and ISA + 20°C. | | TEMPERATURE | | | | | | | | | | | | | | | |-------|--------------------------|-----------------------------|--------------|--------------------------|-----------------------------|--------------|--|--|--|--|--|--|--|--|--| | | | ISA | | ISA + 20°C | | | | | | | | | | | | | 1 | MAN.
PRESS.
IN. HG | FUEL
FLOW
GPH/
ENG | TAS
KNOTS | MAN.
PRESS.
IN. HG | FUEL
FLOW
GPH/
ENG | TAS
KNOTS | | | | | | | | | | | 10000 | 20.2 | | | 20.2 | 10.6 | 178 | | | | | | | | | | | 12000 | 18.7 | 10.2 | 174 | 18.7 | 10.0 | 175 | | | | | | | | | | Interpolate for 11,500 feet and the temperature for the appropriate route segment. Results of the interpolations are: | ROUTE
SEGMENT | MAN.
PRESS.
IN. HG | FUEL
FLOW
GPH/ENG | TAS
KNOTS | |------------------|--------------------------|-------------------------|--------------| | DEN-PUB | 19.1 | 10.4 | 176 | | PUB-TBE | 19.1 | 10.3 | 176 | | TBE-DHT | 19.1 | 10.2 | 175 | | DHT-AMA | 19.1 | 10.2 | 175 | #### NOTE The preceding are exact values for the assumed conditions. #### BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Section V Performance Enter the graph for Descent at 11,500 feet to the descent line, and enter again at 3965 feet to the descent line, and read: Time to Descend = (23-8) = 15 min Fuel Used to Descend = (7.2-2.4) = 4.8 gal Descent Distance = (67-22) = 45 NM Time and fuel used were calculated at Recommended Cruise Power - 24 in. Hg. (or Full Throttle) 2300 RPM as follows: Time = Distance Ground Speed Fuel Used = (Time) (Total Fuel Flow) #### Results are: | ROUTE
SEGMENT | DISTANCE
NM | EST
GROUND
SPEED
KNOTS | TIME AT
CRUISE
ALTITUDE
HRS: MIN | FUEL
USED
FOR
CRUISE
GAL | |------------------|----------------|---------------------------------|---|--------------------------------------| | DEN-COS | *37 | 204 | : 11 | 3.8 | | COS-PUB | 40 | 202 | : 12 | 4.1 | | PUB-TBE | 74 | 160 | : 28 | 9.5 | | TBE-DHT | 87 | 164 | : 32 | 10.8 | | DHT-AMA | *20 | 166 | : 07 | 2.4 | ^{*}Distance required to climb or descend has been sub-tracted from segment distance. TIME - FUEL - DISTANCE | ITEM | TIME
HRS: MINS | FUEL
GAL | DISTANCE
NM | |--|-------------------|-------------|----------------| | Start, Runup,
Taxi and Take-
off | 0:00 | 3.3 | 0 | | Climb | 0:08 | 4.3 | 18 | | Cruise | 1:30 | 30.6 | 258 | | Descent | 0:15 | 4.8 | 45 | | Total | 1:53 | 43.0 | 321 | Total Flight Time: 1 hour, 53 minutes Block Speed: 321 NM ÷ 1 hour, 53 minutes = 170 knots Reserve Fuel: (45 minutes at Economy Cruise Power): Enter the cruise power settings table for Economy Cruise Power at 11,500 feet for ISA (assume ISA Fuel Flow Rate). Fuel Flow Per Engine = 9.0 gal/hr Total Fuel Flow = 18.0 gal/hr (108 lb/hr) Reserve Fuel = (45 min) (108 lb/hr) = 81 lbs (13.5 gal) Total Fuel = 43.0 + 13.5 = 56.5 gallons #### BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Section V Performance The estimated landing weight is determined by subtracting the fuel required for the flight from the ramp weight: Assumed ramp weight = 4901 lbs Estimated fuel from DEN to AMA = 43 gal (258 lbs) Estimated landing weight = 4901-258 = 4643 lbs Examples have been provided on the performance graphs. The above conditions have been used throughout. Rate of climb was determined for the initial cruise altitude conditions. Enter the graph for Landing Distance at 25°C, 3965 feet pressure altitude, 4643 pounds and 9.5 kts headwind component: | Ground Roll | | 1400 ft | |------------------------------------|-----------|---------| | Total Distance over 50 ft Obstacle | | 2000 ft | | Approach Speed | 88 kts (1 | 01 mph) | Enter the graph for Climb-Balked Landing at 25°C, 3965 feet pressure altitude and 4643 pounds: | Rate-of-Climb | . 690 f | t/min | |----------------|---------|-------| | Climb Gradient | | 7.8% | ## COMMENTS PERTINENT TO THE USE OF PERFORMANCE GRAPHS - The example, in addition to presenting an answer for a particular set of conditions, also presents the order in which each graph is normally used. For instance, if the first item in the example is OAT, then enter the graph at the known OAT. - 2. The reference lines indicate where to begin following guide lines. Always project to the reference line first, then follow the guide lines to the next known item. - Indicated airspeeds (IAS) were obtained in flight, by using the Airspeed Calibration-Normal System graph, and the Airspeed Calibration-Normal System Take-off Ground Roll, for all lift-off speeds. - 4. The associated conditions define the specific conditions from which performance parameters have been determined. They are not intended to be used as instructions, however, performance values determined from charts can only be achieved if specified conditions exist. - 5. The full amount of usable fuel is available for all approved flight conditions. 5-14 June 1982 #### AIRSPEED CALIBRATION - NORMAL SYSTEM NOTE INDICATED AIRSPEED ASSUMES ZERO INSTRUMENT ERROR IAS BO KNOTS FLAPS DOWN CAS 79 KNOTS EXAMPLE. June 1982 ## AIRSPEED CALIBRATION - ALTERNATE SYSTEM NOTE. INDICATED ALTITUDE AND INDICATED AIRSPEED ASSUME ZERO INSTRUMENT ERROR EXAMPLÉ. IAS 80 KNDTS FLAPS DOWN INDICATED PRESSURF 5000 FT ALTITUDE ALTIMETER CORRECTION 14 FT ACTUAL PRESSURE (5000 114) = 4986 FT ALTITUDE BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Section V Performance 7 ### **ALTIMETER CORRECTION - ALTERNATE SYSTEM** 5-20 June 1982 2100 2200 2000 2300 ENGINE SPEED \sim RPM 2400 2500 2600 EXAMPLE. #### TAKE-OFF WEIGHT TO ACHIEVE POSITIVE SINGLE ENGINE RATE-OF-CLIMB AT LIFT-OFF #### ASSOCIATED CONDITIONS: #### EXAMPLE: | AIRPLANE | |--------------| | POWER | | FLAPS | | LANDING GEAR | | INOPERATIVE | AIRBORNE FULL THROTTLE AT 2625 RPM UP DOWN
PRESSURE ALTITUDE 5650 OAT 15°C (59°F) TAKE-OFF WEIGHT 4550 LBS #### NOTES THE MAXIMUM ALTITUDE LOSS EXPERIENCED WHILE CONDUCTING STALLS IN ACCORDANCE WITH CAM 3 120 WAS 350 FEET. A NORMAL STALL RECOVERY TECHNIQUE MAY BE USED. EXAMPLE. WEIGHT FLAPS ANGLE OF BANK 4550 LBS STALL SPEED CAS 82 KTS (94 MPH) 80 KTS (92 MPH) BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Performance Section V ## WIND COMPONENTS Demonstrated Crosswind Component is 17 kts #### EXAMPLE: | WIND SPEED ANGLE BETWEEN WIND DIRECTION AND FLIGHT PATH | 20 KTS
50° | |---|------------------| | HEADWIND COMPONENT CROSSWIND COMPONENT | 13 KTS
15 KTS | 5-24 June 1982 #### ASSOCIATED CONDITIONS: POWER TAKE-OFF POWER SET BEFORE BRAKE RELEASE LEAN TO APPROPRIATE FUEL PRESSURE MIXTURE FLAPS LANDING GEAR UP RETRACT AFTER POSITIVE CLIMB ESTABLISHED OPEN PAVED, LEVEL, DRY SURFACE COWL FLAPS RUNWAY #### **TAKE-OFF DISTANCE** TAKE-OFF SPEEDS [ALL WEIGHTS] LIFT-OFF 50 FT 84 KTS (97 MPH) 91 KTS (105 MPH) #### EXAMPLE. 15°C (59°F) 5650 FT 4880 LBS 9.5 KT\$ OAT PRESSURE ALTITUDE TAKE-OFF WEIGHT HEADWIND COMPONENT GROUND ROLL TOTAL DISTANCE OVER 50 FT OBSTACLE TAKE-OFF SPEED AT LIFT-OFF 50 FT 1925 FT **2950** 84 KT\$ (97 MPH) 91 KT\$ (105 MPH) BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Performance Section V #### **ACCELERATE - STOP DISTANCE** DECISION SPEED (ALL WEIGHTS) 84 KTS (97 MPH) 15°C (59°F) 5650 FT 4880 LBS 9.5 KTS OAT PRESSURE ALTITUDE TAKE-OFF WEIGHT HEAD WIND ACCELERATE-STOP DISTANCE DECISION SPEED 4030 FT 84 KTS (97 MF EXAMPLE: Section V Performance BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 TAKE-OFF POWER SET BEFORE BRAKE RELEASE RELEASE REMSINE IDLE AT DECISION SPEED PAVED, LEVEL, DRY SURFACE OPEN FLAPS RUNWAY COWL FLAPS June 1982 4400 WEIGHT ~ POUNDS 4200 **ACCELERATE-GO DISTANCE** EXAMPLE: 10 20 WIND COMPONENT ~ KNOTS OBSTACLE HEIGHT BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Performance June 1982 ASSOCIATED CONDITIONS: 40 -30 -20 -10 0 10 20 30 40 50 OUTSIDE AIR TEMPERATURE ~ °C #### **CLIMB-TWO ENGINE** ASSOCIATED CONDITIONS. MAXIMUM CONTINUOUS AT 2625 RPM UP UP OPEN LEAN TO APPROPRIATE FUEL PRESSURE POWER FLAPS LANDING GEAR COWL FLAPS MIXTURE CLIMB SPEED 101 KNOTS (ALL WEIGHTS) 116 MPH EXAMPLE: OAT PRESSURE ALTITUDE WEIGHT -5°C (23°F) 11500 FT 4855 LBS RATE-OF-CLIMB CLIMB GRADIENT 690 FT/MIN 5.5% June 1982 BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Section V Performance ASSOCIATED CONDITIONS. TAKE-OFF AT 2625 RPM UP UP POWER LANDING GEAR FLAPS INOPERATIVE PROPELLER COWL FLAPS FEATHERED OPEN CLIMB SPEED (ALL WEIGHTS) 91 KNOTS (105 MPH) EXAMPLE: OAT PRESSURE ALTITUDE WEIGHT GRADIENT OF CLIMB 1.3% 91 KTS (105 MPH) 15°C (59°F) 5650 FT 4550 LBS BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Section V Performance #### TIME, FUEL AND DISTANCE TO CLIMB CLIMB SPEED - 123 KNOTS 142 MPH ASSOCIATED CONDITIONS: POWER 25 IN. HG OR FULL THROTTLE 2500 RPM 6.0 LB/GAL LEAN TO APPROPRIATE PRESSURE AS REQUIRED FUEL DENSITY MIXTURE COWL FLAPS EXAMPLE: OAT AT TAKE-OFF OAT AT CRUISE AIRPORT PRESSURE ALTITUDE CRUISE PRESSURE ALTITUDE INITIAL CLIMB WEIGHT 15°C (59°F) -5°C (23°F) 5650 FT 11500 FT 4880 LB\$ TIME TO CLIMB FUEL TO CLIMB DISTANCE TO CLIMB 12.5-5 = 7.5 MIN 7.3-3 = 4-3 GAL 28-10 = 18 N M June 1982 -1000 OUTSIDE AIR TEMPERATURE ↑ °C -40 -20 0 20 40 60 80 OUTSIDE AIR TEMPERATURE ∼ °F 1000 4200 WEIGHT ~ POUNDS 100 120 4800 FLAPS #### SERVICE CEILING-ONE ENGINE INOPERATIVE ASSOCIATED CONDITIONS: EXAMPLE: POWER MAXIMUM CONTINUOUS OAT 5°C (41°F) AT 2625 RPM WEIGHT 4550 LBS INOPERATIVE PROPELLER FEATHERED SERVICE CEILING 8000 FT NOTE: SERVICE CEILING IS THE PRESSURE ALTITUDE WHERE AIRPLANE HAS CAPABILITY OF CLIMBING 50 FT/MINUTE WITH ONE PROPELLER FEATHERED #### **CRUISE SPEEDS** ASSOCIATED CONDITIONS: AVERAGE CRUISE WEIGHT TEMPERATURE 4700 LBS. STANDARD DAY (ISA) EXAMPLE: PRESSURE ALTITUDE POWER SETTING 11500 FT FULL THROTTLE 2300 RPM TRUE AIRSPEED 175 KNOTS #### **FUEL FLOW vs BRAKE HORSEPOWER** #### EXAMPLE: FUEL FLOW/ENGINE CONDITION 10.2 GAL/HR LEVEL FLIGHT CRUISE LEAN BRAKE HORSEPOWER PER ENGINE 144 HP 5-34 June 1982 #### **FUEL FLOW vs FUEL PRESSURE** | E | XΑ | M | Р | LI | Ξ | | |---|----|---|---|----|---|--| | | | | | | | | | FUEL FLOW/ENGINE | 10.2 GAL/HR | |------------------|-------------| | FUEL PRESSURE | 5 8 PSI | June 1982 5-35 MAXIMUM CRUISE POWER 24.5 IN, HG., 2450 RPM (OR FULL THROTTLE) WEIGHT = 4700 LBS. | AT. | ENGINE | | FÜ | _ | | | STANDARD DAY (ISA) | | | | | | | | | ISA +36 ⁰ F (+20 ⁰ C) | | | | | | | | |---|---|--|--|---|---|--|--|--|--|---|--|---|--|--
--|---|--|---|--
--|---|--|--| | | SPEED | | FLO | DW/ i | T, | AS | ٥ | ΑT | | SOEED ODESS FL | | EL
DW/
INE | / TAS | | OAT | | ENGINE
SPEED | | FUEL
FLOW/
ENGINE | | TA | ıs | | | °c | RPM | IN HG | PSI | GPH | KTS | МРН | °F | °C | RPM | IN HG | PSI | GPH | KTS | мрн | ٥F | °C | RPM | IN HG | PSI | GPH | KTS | МРН | | | 2 | 2450 | 24.5 | 8.6 | 14.2 | 175 | 201 | 64 | 18 | 2450 | 24.5 | 8.2 | 13,7 | 176 | 203 | 100 | 38 | 2450 | 24.5 | 7.8 | 13.1 | 178 | 205 | | | -6 | 2450 | | | | | | | 1 ' | | 24.5 | | | | | | | | 24.5 | | 13.7 | | 1 - | | | v: v: | | | kexx 2000 | 2 172 1000 | an estatua | 10,000,000 | | V0071111 | CONTRACTOR OF THE PERSON NAMED IN | | | | | | | | | | : 7x: 252 | 402017111 | e araseas | da o xxx o y o y o | | | 200000000 | | ~~x~x~x~x | P4689 52375. | VXX 80 1100 | 00,4000000 | 80×00×022 | 20000 | P994(7.77) | S 200 00 00 00 00 00 00 00 00 00 00 00 00 | | | | | | | | | ************ | | ******** | N. S. A. S. P. G. P. S. | \$75552325 3 | | | | and the second second second second | | ******** | 2022000000 | 70000000000 | 200,000,000,000 | CCXCX 5 | 2286444 | | | | | | | | | | | 02.02.05 | 2000000 | ********* | 300000000000000000000000000000000000000 | | | | 0.600.000000000000000000000000000000000 | | | | | | | | | | ******** | 200.003.000 | 6 52 6×69 | 21.20.0.0.000 | 2,000 | 22.23 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | # NO. 00 P. NO. 00 | ******* | | 222371499 | \$20 CONTRACTOR | | | 20/2007/20 | LAA020XX6X00X6Y | 440040000000000000000000000000000000000 | 110000 | E. C. VAVA | | 2000000000 | 444.644 | 44,427,72 | 444500 444500 4669 | ************* | | ******* | 6 x 6 x 5 6 5 | 200000000000000000000000000000000000000 | Same | .000000 | 00.000,000,000,000,000 | 200000000000000000000000000000000000000 | Sec. 11/10 | ***** | *** | 1.8.8xxx | | | \$2200000yx | Transcension of | | | | | | | | | | | | | | | | | 200000000000000000000000000000000000000 | 4 494848 | 100000000 | 200 10. 24 | X00Y 200Y | | | 777777777777777777777777777777777777777 | -2
-6
-10
-14
-18
-22
-26 | -2 2450
-6 2450
-10 2450
-12 2450
-18 2450
-22 2450
-25 2450
-20 2450 | -2 2450 24.5
-6 2450 24.5
-10 2450 24.5
14 2450 23.3
18 2450 21.6
-22 2450 20.3
-26 2450 18.7
-30 2450 17.2 | -2 2450 24.5 8.6
-6 2450 24.5 9.0
-10 2450 24.5 9.3
14 2450 23.3 8.9
-18 2450 23.3 8.9
-22 2450 30.3 7.2
-26 2450 18.2 5.6
-30 2450 17.2 8.5 | -2 2450 24.5 8.6 14.2
-6 2450 24.5 9.0 14.7
-10 2450 24.5 9.3 15.2
-44 2450 23.3 8.9 14.5
-18 2450 21.6 8.0 13.4
-22 2450 20.1 7.2 12.3
-8 2450 38.7 5.6 13.4
-20 2450 17.2 8.1 10.7 | -2 2450 24.5 8.6 14.2 175 -6 2450 24.5 9.0 14.7 180 -10 2450 24.5 9.3 15.2 185 -14 2450 23.3 8.9 14.5 180 -18 2450 21.8 80 13.4 185 -22 2450 20.3 7.2 12.3 183 -26 2460 18.7 6.6 13.4 180 -30 2450 17.2 8.1 10.7 178 | -2 2450 24.5 8.6 14.2 175 201
-6 2450 24.5 9.0 14.7 180 207
-10 2450 24.5 9.3 15.2 185 213
-14 2450 25.5 8.6 14.6 385 214
-18 2450 21.6 8.0 13.4 385 214
-22 2450 20.3 7.2 12.3 183 210
-26 2450 38.7 5.6 11.4 190 207
-30 2450 17.2 8.1 10.7 178 206 | -2 2450 24.5 8.6 14.2 175 201 64
-6 2450 24.5 9.0 14.7 180 207 57
-10 2450 24.5 9.3 15.2 185 213 51
-14 2450 23.3 8.8 14.8 186 214 48
-18 2450 21.8 8.0 13.4 185 214 38
-22 2450 20.3 7.2 12.3 183 210 29
-26 2460 18.7 6.6 11.4 180 207 22
-30 2450 17.2 8.3 10.7 178 206 14 | -2 2450 24.5 8.6 14.2 175 201 64 18
-6 2450 24.5 9.0 14.7 180 207 57 14
-10 2450 24.5 9.3 15.2 185 213 51 10
14 2450 23.3 6.9 16.5 186 214 44 6
18 2450 21.8 8.0 13.4 185 214 38 2
-22 2450 20.3 7.2 12.3 183 210 25 42
-26 2460 38.7 6.6 13.4 186 207 22 46
-30 2450 17.2 8.1 10.7 178 266 14 10 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450
-6 2450 24.5 9.0 14.7 180 207 57 14 2450
-10 2450 24.5 9.3 15.2 185 213 51 10 2450
-14 2450 23.3 8.8 14.6 185 213 51 10 2450
-18 2450 23.3 8.8 14.6 185 213 36 2 2450
-22 2450 20.1 72 12.3 183 210 25 22 2450
-26 2450 18.7 58 11.4 180 207 22 -6 2450
-30 2450 17.2 8.1 10.7 178 205 14 10 2450 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 -6 2450 24.5 9.0 14.7 180 207 57 14 2450 24.5 -10 2450 24.5 9.3 15.2 185 213 51 10 2450 24.5 14 2450 24.5 14 2450 24.5 14 2450 24.5 14 2450 24.5 14 2450 24.5 14 2450 24.5 14 2450 25.3 18.8 2450
25.3 18.8 2450 25.3 18.8 2 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.2 -6 2450 24.5 9.0 14.7 180 207 57 14 2450 24.5 8.6 -10 2450 24.5 9.3 15.2 185 213 51 10 2450 24.5 8.9 14.2 1450 23.3 8.4 15 2450 23.3 8.4 15 2450 23.3 8.4 15 2450 21.8 8.9 14.5 180 214 34 6 2450 23.3 8.4 15 2450 21.8 8.9 14.5 180 214 34 6 2450 21.8 8.6 14.5 180 214 34 6 2450 21.8 8.6 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.2 13.7 66 2450 24.5 9.0 14.7 180 207 57 14 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.6 14.2 175 2450 24.5 8.6 14.2 175 2450 24.5 8.9 14.6 14.2 175 2450 24.5 8.9 14.6 14.2 175 2450 21.8 18.6 14.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.2 13.7 176 6 2450 24.5 9.0 14.7 180 207 57 14 2450 24.5 8.6 14.2 182 -10 2450 24.5 9.3 15.2 185 213 51 10 2450 24.5 8.9 14.6 187 14 2450 23.3 6.8 14.5 188 214 44 6 2450 24.5 8.9 14.6 187 14 2450 23.3 6.8 14.5 188 214 44 6 2450 24.5 8.9 14.6 187 14 2450 23.3 6.8 14.5 188 214 44 6 2450 24.5 8.9 14.6 187 14 2450 21.8 24.5 14.0 188 24.5 24.5 14.0 188 24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.2 13.7 176 203 66 2450 24.5 9.0 14.7 180 207 57 14 2450 24.5 8.6 14.2 182 210 10 2450 24.5 9.3 15.2 185 213 51 10 2450 24.5 8.9 14.6 187 215 14 2450 23.3 8.8 14.6 187 215 10 2450 24.5 8.9 14.6 187 215 10 2450 24.5 8.9 14.6 187 215 10 2450 24.5 8.9 14.6 187 215 10 2450 24.5 8.9 14.6 187 215 10 2450 24.5 8.9 14.6 187 215 10 2450 21.8 2450 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.2 13.7 176 203 100 24.5 24.5 9.0 14.7 180 207 57 14 2450 24.5 8.6 14.2 182 210 93 100 2450 24.5 9.3 15.2 185 213 51 10 2450 24.5 8.9 14.6 187 215 87 14 2450 23.3 6.8 14.6 187 215 87 14 2450 23.3 6.8 14.6 187 215 87 14 2450 23.3 6.8 14.6 187 215 87 14 2450 23.3 6.8 14.6 187 215 87 14 2450 23.3 6.8 14.6 187 215 87 14 2450 23.3 6.8 14.6 187 215 87 14 2450 23.3 6.8 14.6 187 215 87 14 2450 21.8 2450 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.2 13.7 176 203 100 38 -6 2450 24.5 9.0 14.7 180 207 57 14 2450 24.5 8.6 14.2 182 210 93 34 -10 2450 24.5 9.3 15.2 185 213 51 10 2450 24.5 8.9 14.6 187 215 87 30 14.2 2450 23.3 8.4 14.0 182 217 83 25 18 2450 21.8 2450 2 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.6 14.2 182 210 93 34 2450 24.5 8.6 14.2 182 210 93 34 2450 24.5 9.0 14.7 180 207 57 14 2450 24.5 8.6 14.2 182 210 93 34 2450 24.5 8.6 14.2 182 210 93 34 2450 24.5 8.6 14.2 182 210 93 34 2450 24.5 8.6 14.2 182 210 93 34 2450 24.5 8.6 14.2 182 210 93 34 2450 24.5 8.9 14.6 187 215 87 30 2450 24.5 8.9 14.6 187 215 87 30 2450 24.5 8.9 14.6 187 215 87 30 2450 24.5 8.9 14.6 187 215 87 30 2450 2450 25.8 8.0 12.8 8.0 13.4 185 213 86 2 2 2450 218 16.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.2 13.7 176 203 100 38 2450 24.5 -6 2450 24.5 9.0 14.7 180 207 57 14 2450 24.5 8.6 14.2 182 210 93 34 2450 24.5 -10 2450 24.5 9.3 15.2 185 213 51 10 2450 24.5 8.9 14.6 187 215 87 30 2450 24.5 14 2450 24.5 8.9 14.6 187 215 87 30 2450 24.5 14 2450 23.3 8.4 14.0 189 217 80 26 2450 23.3 18 2450 24.5 18 2450 24.5 18 2450 21.8 18 2450
21.8 18 2450 21.8 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.6 14.2 180 207 57 14 2450 24.5 8.6 14.2 182 210 93 34 2450 24.5 8.2 13.7 176 203 100 38 2450 24.5 8.2 13.6 14.2 182 210 93 34 2450 24.5 8.2 13.7 176 203 100 38 2450 24.5 8.2 13.7 176 203 100 2450 24.5 8.2 13.7 176 203 100 2450 24.5 8.2 13.7 176 203 100 2450 11.2 176 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.2 13.7 176 203 100 38 2450 24.5 7.8 13.1 6 2450 24.5 9.0 14.7 180 207 57 14 2450 24.5 8.6 14.2 182 210 93 34 2450 24.5 8.2 13.7 176 203 100 38 2450 24.5 8.2 13.7 176 203 100 38 2450 24.5 8.2 13.7 176 203 100 38 2450 24.5 8.2 13.7 176 203 100 38 2450 24.5 8.2 13.7 176 203 100 38 2450 24.5 8.2 13.7 176 203 100 38 2450 24.5 8.2 13.7 13.1 14.0 187 215 87 30 2450 24.5 8.4 14.0 183 215 87 30 2450 24.5 8.4 14.0 183 215 87 30 2450 24.5 8.4 14.0 183 215 87 30 2450 28.3 8.1 13.5 18 2450 21.8 8.2 13.7 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 | -2 2450 24.5 8.6 14.2 175 201 64 18 2450 24.5 8.6 14.2 185 210 93 34 2450 24.5 8.2 13.7 176 203 100 38 2450 24.5 8.2 13.7 180 24.5 8.2 13. | | June 1982 - NOTES: 1. FULL THROTTLE MANIFOLD PRESSURE SETTINGS ARE APPROXIMATE 2. SHADED AREA REPRESENTS OPERATION WITH FULL THROTTLE RECOMMENDED CRUISE 24.0 IN. HG., 2300 RPM (OR FULL THROTTLE) WEIGHT = 4700 LBS | | | ISA -36°F (-20°C) | | | | | | | | | STANDARD DAY (ISA) | | | | | | | | | ISA +36°F (+20°C) | | | | | | | | |---------------|----------------|-------------------|-----------------|-------|-------------------------|------|-----|-----|-----|-----|--------------------|-------|-------------------------|------|-----|-----|-----|----|-----------------|-------------------|-------------------------|------|-----|-----|--|--|--| | PRESS
ALT. | O.A | ΛŤ. | ENGINE
SPEED | | FUEL
FLOW/
ENGINE | | TAS | | OAT | | ENGINE
SPEED | | FUEL
FLOW/
ENGINE | | TAS | | OAT | | ENGINE
SPEED | | FUEL
FLOW/
ENGINE | | TAS | | | | | | FEET | o _F | °C | RPM | IN HG | PSI | GРH | KTS | мрн | ٥F | °C | RPM | IN HG | PSI | GPH | KTS | MPH | ٥F | °c | RPM | IN HG | PSI | | KTS | МРН | | | | | \$L | 28 | -2 | | 24.0 | 7,2 | 12,3 | 167 | 192 | 64 | 18 | 2300 | 24.0 | 6.9 | 11.9 | 169 | 194 | 100 | 38 | 2300 | 24.0 | 6.7 | Γ | 170 | 196 | | | | | 2000 | 21 | -6 | 2300 | 24.0 | 7.5 | 12.7 | 172 | 198 | 57 | 14 | 2300 | 24.0 | 7.2 | 12,3 | 173 | 199 | 93 | 34 | 2300 | 24.0 | 6,9 | 11.8 | 175 | 201 | | | | | 4000 | 14 | -10 | 2300 | 24.0 | 7.8 | 13.1 | 177 | 203 | 50 | 10 | 2300 | 24.0 | 7.4 | 12.6 | 179 | 206 | 86 | 30 | 2300 | 24.0 | 7.1 | 12,2 | 180 | 207 | | | | | 6000 | | -14 | 2300 | 23.4 | 7.7 | 13.0 | 180 | 207 | *3 | | 2300 | 23.A | 7.3 | 12.5 | 182 | 210 | 7.0 | 26 | 2300 | 23,4 | 7.0 | 12.1 | 183 | 211 | | | | | 8000 | e | (8 | 2300 | 24.7 | 7.0 | 12.0 | 178 | 205 | 36 | 2 | 2300 | 21.7 | 67 | 11.6 | 180 | 207 | 22 | 22 | 2300 | 21.7 | 6.5 | 11.3 | 181 | 201 | | | | | 0000 | -8 | -22 | 2300 | 20.2 | 65 | 11,2 | 176 | 203 | 29 | 2 | 2300 | 30.2 | 6.3 | 109 | 177 | 203 | 65 | 18 | 2300 | 20.2 | 6.1 | 10.6 | 178 | 201 | | | | | 12000 | -15 | -26 | 2300 | 18.7 | 6.0 | 10.5 | 123 | 199 | 21 | | 2300 | 1B.7 | 5.8 | 10.2 | 174 | 201 | 55) | 14 | 2390 | 18,7 | 5.7 | 10.0 | 175 | 20 | | | | | 4000 | 22 | - 30 | 2300 | 173 | 5.7 | 8.9 | 170 | 196 | 14 | -10 | 2300 | 17.3 | 5.5 | 9.7 | 272 | 198 | 535 | 10 | 230e | 17.3 | 5.3 | 9.4 | 172 | 191 | | | | | 16000 | -29 | 34 | 2300 | 16.0 | 5.3 | 93 | 167 | 192 | | 14 | 2300 | 16.0 | 5.2 | 9.1 | 167 | 192 | 43 | 6 | 2300 | 16,0 | 5.1 | 8.9 | 167 | 19 | | | | NOTES: 1. FULL THROTTLE MANIFOLD PRESSURE SETTINGS ARE APPROXIMATE 2. SHADEO AREA REPRESENTS OPERATION WITH FULL THROTTLE RECOMMENDED CRUISE POWER 22.0 IN. HG., 2200 RPM (OR FULL THROTTLE) WEIGHT = 4700 LBS. | PRESS
ALT. | ISA -36°F (-20°C) | | | | | | | | STANDARD DAY (ISA) | | | | | | | | | ISA +36 ⁰ F (+20 ⁰ C) | | | | | | | | |---------------|-------------------|-----|-----------------|-------|-------------------------|------|------|-----|--------------------|-----|-----------------|---------------|-------------------------|------|-----|-----|-----|---|-----------------|-------|-------------------------|------|-----|-----|--| | | OAT | | ENGINE
SPEED | | FUEL
FLOW/
ENGINE | | TAS | | OAT | | ENGINE
SPEED | MAN.
PRESS | FUEL
FLOW/
ENGINE | | TAS | | OAT | | ENGINE
SPEED | | FUEL
FLOW/
ENGINE | | TAS | | | | FEET | ٥F | oc. | RPM | IN HG | PŞI | GPH | KTS | мрн | ٥F | °C | RPM | IN HG | PSI | GPH | KTS | MPH | ٥F | °C | RPM | IN HG | PSI | GPH | KTS | MPH | | | SL | 27 | -3 | 2200 | 22.0 | 5.9 | 10.3 | 154 | 177 | 63 | 17 | 2200 | 22.0 | 5.7 | 10.0 | 155 | 178 | 99 | 37 | 2200 | 22.0 | 5,6 | 9,8 | 156 | 179 | | | 2000 | 20 | -7 | 2200 | 22.0 | 6.1 | 10.6 | 159 | 183 | 56 | 13 | 2200 | 22.0 | 5.9 | 10.3 | 160 | 184 | 92 | 33 | 2200 | 22.0 | 5.7 | 10.0 | 161 | 186 | | | 4000 | 13 | -10 | 2209 | 22.0 | 6.3 | 10,9 | 164 | 189 | 49 | 10 | 2200 | 22.0 | 6.1 | 10.6 | 165 | 190 | 85 | 30 | 2200 | 22,0 | 5.9 | 10,3 | 166 | 191 | | | 6000 | 6 | -14 | 2200 | 22.0 | 6.8 | 11.7 | 169 | 194 | 42 | 6 | 2200 | 22.0 | 6.2 | 8.01 | 170 | 196 | 79 | 26 | 2200 | 22.0 | 6.0 | 10,5 | 171 | 197 | | | 8000 | 1 | 18 | 2200 | 21.3 | 6.5 | 11.2 | 173 | 199 | 36 | 2 | 2200 | 21.8 | 6.3 | 10.0 | 174 | 201 | 72 | 22 | 2200 | 21.8 | 6.1 | 10.6 | 176 | 203 | | | 10000 | 8 | -22 | 2200 | 20.2 | 6.1 | 10.6 | 1774 | 197 | 28 | -2 | 2200 | 20.2 | 69 | 103 | 122 | 198 | 64 | 18 | 2200 | 20.2 | 5.7 | 10.0 | 173 | 199 | | | 12000 | 15 | 26 | 2200 | 18.7 | 57. | 10.0 | 188 | 194 | 24 | - 6 | 2200 | 18.7 | 5.5 | 9.7 | 169 | 194 | 57 | 14 | 2200 | 18.7 | 5.4 | 95 | 170 | 196 | | | 14000 | -22 | 30 | 2200
 17.3 | 6.4 | 9.4 | 166 | 190 | 14 | to | 2200 | 17.3 | 5.2 | 9.1 | 165 | 190 | 50 | 10 | 2200 | 17,3 | 5.1 | 8.9 | 106 | 191 | | | 16086 | -30 | -34 | -2200 | 16.G | 5.1 | 8.9 | 101 | 186 | 6 | 14 | 2200 | 16.0 | 4.9 | 8.7 | 160 | 184 | 42 | 6 | 2200 | 16.0 | 4.9 | 8.6 | 161 | 186 | | June 1982 - NOTES: 1. FULL THROTTLE MANIFOLD PRESSURE SETTINGS ARE APPROXIMATE 2. SHADED AREA REPRESENTS OPERATION WITH FULL THROTTLE ECONOMY CRUISE POWER 20.0 IN. HG, 2100 RPM (OR FULL THROTTLE) WEIGHT = 4700 LBS, | PRESS
ALT. | ISA —36°F (—20°C) | | | | | | | | STANDARD DAY (ISA) | | | | | | | | | ISA +36 ⁰ F (+20 ⁰ C) | | | | | | | | |---------------|-------------------|--------------|-----------------|-------|-------------------------|-----|-----|-----|--------------------|-----|-----------------|---------------|-------------------------|-----|-----|-----|-----|---|-----------------|-------|-------------------------|-----|-----|-------|--| | | OAT | | ENGINE
SPEED | | FUEL
FLOW/
ENGINE | | TAS | | OAT | | ENGINE
SPEED | MAN,
PRESS | FUEL
FLOW/
ENGINE | | TAS | | OAT | | ENGINE
SPEED | | FUEL
FLOW/
ENGINE | | TAS | | | | FEET | oF | °C | RPM | IN HG | PSI | GPH | KTS | MPH | ٥F | ° | RPM | IN HG | PSI | GPH | ктş | МРН | ٥F | °C | RPM | IN HG | PSI | GPH | KTS | MPH | | | SL | 26 | -3 | 2100 | 20.0 | 4.9 | 8.7 | 139 | 160 | 62 | 17 | 2100 | 20.0 | 4.8 | 8.5 | 140 | 161 | 98 | 37 | 2100 | 20,0 | 4.7 | 8.3 | 140 | 161 | | | 2000 | 19 | -7 | 2100 | 20.0 | 5.1 | 8.9 | 144 | 166 | 55 | 13 | 2100 | 20.0 | 4.9 | 8.7 | 145 | 167 | 91 | 33 | 2100 | 20.0 | 4.8 | 8.5 | 145 | 167 | | | 4000 | 12 | -11 | 2100 | 20.0 | 5.2 | 9.1 | 149 | 171 | 48 | 9 | 2100 | 20.0 | 5.1 | 8.9 | 150 | 172 | 84 | 29 | 2100 | 20.0 | 4,9 | 8,7 | 150 | 172 | | | 6000 | 6 | _15, | 2100 | 20.0 | 5.3 | 9.3 | 153 | 177 | 42 | 5 | 2100 | 20.0 | 5.2 | 9,1 | 154 | 177 | 78 | 25 | 2100 | 20,0 | 5.1 | 8.9 | 155 | 178 | | | 8000 | 1 | <u> </u> _19 | 2100 | 20.0 | 5.4 | 9.5 | 158 | 182 | 35 | 1 | 2100 | 20.0 | 5,3 | 9.3 | 159 | 183 | 71 | 22 | 2100 | 20.0 | 5.2 | 9.0 | 159 | 183 | | | 10000 | -8 | -22 | 2100 | 20.0 | 5.5 | 9.7 | 162 | 187 | 28 | _2 | 2100 | 20.0 | 5.4 | 9.4 | 163 | 188 | 64 | 18 | 2100 | 20.0 | 5.2 | 9.2 | 164 | 188 | | | 12000 | -15 | - 25 | 2100 | 18.7 | 5.3 | 9.3 | 362 | 187 | 21 | -6 | 2100 | 18.7 | 52 | 9.1 | 102 | 187 | 57 | 14 | 2100 | 18,7 | 5.1 | 88 | 162 | 187 | | | 14000 | -23 | -30 | 2100 | 173 | 5.0 | 8.8 | 158 | 182 | 13 | -10 | 2100 | 17.3 | 49 | 8.6 | 158 | 192 | 49 | 10 | 2100 | 17.3 | 4.8 | 8.5 | 188 | 182 | | | 16000 | -30 | 34 | 2100 | 16.0 | 4.8 | 8.5 | 155 | 178 | | 14 | 2100 | 16.0 | 4.7 | 83 | 154 | 127 | 42 | 5 | 2100 | 16.0 | 4.6 | 9.1 | 183 | 1 177 | | NOTES: 1. FULL THROTTLE MANIFOLD PRESSURE SETTINGS ARE APPROXIMATE 2. SHADED AREA REPRESENTS OPERATION WITH FULL THROTTLE #### **RANGE PROFILE - 106 GALLONS** ASSOCIATED CONDITIONS: WEIGHT 4700 LBS FUEL AVIATION GASOLINE FUEL DENSITY 6.0 LB/GAL INITIAL FUEL LOADING 10s U S. GAL (636 LBS) STANDARD DAY (ISA) EXAMPLE. PRESSURE ALTITUDE POWER SETTING 11500 FT FULL THROTTLE 2300 RPM RANGE 720 N M 829 S M NOTE: RANGE INCLUDES START, TAXI, CLIMB AND DESCENT WITH 45 MINUTES RESERVE FUEL AT ECONOMY CRUISE June 1982 #### **ENDURANCE PROFILE - 106 GALLONS** ASSOCIATED CONDITIONS: WEIGHT FUEL FUEL DENSITY INITIAL FUEL LOADING 4700 LBS AVIATION GASOLINE 6.0 LBS/GAL 106 U.S. GAL (636 LBS) STANDARD DAY (ISA) PRESSURE ALTITUDE POWER SETTING 11500 FT FULL THROTTLE 2300 RPM BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Section V Performance ENDURANCE EXAMPLE: 4.2 HRS 4 HRS 12 MIN NOTE: ENDURANCE INCLUDES START TAXI CUMB AND DESCENT WITH 45 MINUTES RESERVE FUEL AT ECONOMY CRUISE. ## Section V Performance nce # BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 ### **RANGE PROFILE-136 GALLONS** ASSOCIATED CONDITIONS: WEIGHT FUEL FUEL DENSITY INITIAL FUEL LOADING 4700 LBS AVIATION GASOLINE 6.0 LBS/GAL 136 U.S. GAL (816 LBS) STANDARD DAY (ISA) EXAMPLE. PRESSURE ALTITUDE POWER SETTING 11500 FT FULL THROTTLE 2300 RPM RANGE 977 N M 1125 S M NOTE. RANGE INCLUDES START TAXI CLIMB AND DESCENT WITH 45 MINUTES RESERVE FUEL AT ECONOMY CRUISE June 1982 4700 LBS AVIATION GASOLINE 6.0 LBS/GAL 136 U.S. GAL (816 LBS) ENDURANCE 11500 FT FULL THROTTLE 2300 RPM 2300 RPM 5.6 HRS 5 HR\$ 36 MIN BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 Performance Section V NOTE: ENDURANCE INCLUDES START TAXI CLIMB AND DESCENT WITH 45 MINUTES RESERVE FUEL AT ECONOMY CRUISE. ASSOCIATED CONDITIONS: POWER SETTING 20.0 IN HG OR FULL THROTTLE 2100 RPM **HOLDING TIME** EXAMPLE: FUEL AVAILABLE FOR HOLDING PRESSURE ALT 200 LB\$ 5000 FT HOLDING TIME 1.8 HRS 1 HR, 48 MIN Section V Performance BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 UP #### TIME, FUEL AND DISTANCE TO DESCEND ASSOCIATED CONDITIONS: **POWER** AS REQUIRED TO MAINTAIN 500 FT/MIN RATE-OF-DESCENT LANDING GEAR **FLAPS** EXAMPLE: INITIAL ALTITUDE FINAL ALTITUDE 11500 FT 3965 FT TIME TO DESCEND FUEL TO DESCEND DISTANCE TO DESCEND (23-8) = 15 MIN (7.2-2.8) = 4 4 GAL (67-22) = 45 N M DESCENT SPEED: 162 KIAS #### CLIMB-BALKED LANDING CLIMB SPEED (ALL WEIGHTS) 88 KTS (101 MPH) EXAMPLE: OAT PRESSURE ALTITUDE 3965 FT WEIGHT 4643 LBS RATE-OF-CLIMB 690 FT,MIN 7.8% Section V Performance BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 June 1982 #### ASSOCIATED CONDITIONS: RETARDED TO MAINTAIN 800 FT/MIN ON FINAL APPROACH FLAPS LANDING GEAR RUNWAY APPROACH SPEED BRAKING APPROACH DOWN DOWN PAVED, LEVEL, DRY SURFACE IAS AS TABULATED MAXIMUM #### LANDING DISTANCE | WEIGHT | SPEED AT 50 FEET | | | |--------------------------------------|----------------------------|------------------------------|--| | POUNDS | KNOTS | MPH | | | 4880
4800
4600
4400
4200 | 98
87
85
84
81 | 101
100
98
97
93 | | | OAT
PRESSURE ALTITUDE
WEIGHT
WIND COMPONENT | 3965 FT
4645 LBS
9.5 KTS | |--|--------------------------------| | GROUND ROLL | 1400 FT | | TOTAL OVER 50 FT OBSTACLE | 2000 FT | | APPROACH 85 | KTS (98 MPH) | INTENTIONALLY LEFT BLANK 5-48 June 1982 ## **SECTION IV** ## **NORMAL PROCEDURES** ## **TABLE OF CONTENTS** | SUBJECT | PAGE | |------------------------------|-------| | Airspeeds for Safe Operation | . 4-3 | | Preflight Inspection | . 4-4 | | Before Starting | . 4-7 | | Starting | . 4-8 | | After Starting and Taxi | 4-10 | | Before Takeoff | | | Takeoff | 4-11 | | Maximum Performance Climb | 4-13 | | Cruise Climb | 4-13 | | Cruise | 4-13 | | Leaning Using EGT | 4-14 | | Descent | 4-14 | | Before Landing | 4-15 | | Balked Landing | 4-15 | | After Landing | 4-16 | | Shutdown | | | Oxygen System | 4-16 | | Cold Weather Operation | 4-19 | | Preflight Inspection | 4-19 | | Engines | 4-20 | | External Power | 4-21 | | Starting Engines Using | | | Auxiliary Power Unit | 4-22 | | Taxiing | 4-22 | | | | # Section IV BEECHCRAFT Baron 55, A55 Normal Procedures Serial TC-1 thru TC-501 ## **TABLE OF CONTENTS** | SUBJECT | PAGE | |--|------| | Ice Protection Systems | 4-22 | | Alternate (Emergency) Static Air Source | 4-23 | | Electrothermal Propeller Deice | 4-24 | | Propeller Anti-Ice System (Fluid Flow) . | 4-24 | | Pitot Heat and Heated Stall Warning . | 4-25 | | Windshield Defogging | 4-25 | | Engine Break-In Information | 4-26 | | Practice Demonstration of V _{MCA} | | 4-2 June 1982 All airspeeds quoted in this section are indicated airspeeds (IAS) and assume zero instrument error. ## AIRSPEEDS FOR SAFE OPERATION (Settings established at 4880 lbs.) | Two-Engine Best Angle-of-Climb 84 kts/97 mg Two-Engine Best Rate-of-Climb 101 kts/116 mg | | |--|----| | Single-Engine Best Angle-of-Climb 91 kts/105 mp
Single-Engine Best Rate-of-Climb 100 kts/115 mp | | | Air Minimum Control (V _{MCA}) | | | Cruise Climb 123 kts/142 mp |)h | | Balked Landing Climb | | | Flaps DOWN | | | Turbulent Air Penetration 157 kts/181 mp
Maximum Demonstrated Crosswind 22 kts/25 mp | h | #### PREFLIGHT INSPECTION Emergency Locator Transmitter - ARMED. Location may vary with individual airplanes. #### 1. COCKPIT: - a. Control Lock REMOVE AND STOW - b. Parking Brake SET - c. All Switches OFF - d. Trim Tabs SET TO ZERO #### 2. RIGHT FUSELAGE: - a. Load Distribution CHECK AND SECURED - b. Baggage Door SECURE - c. Static Port UNOBSTRUCTED #### 3. EMPENNAGE: - a. Control Surfaces, Tabs and Deice Boots CHECK CONDITION, SECURITY, AND ATTACHMENT - b. Tail Cone, Tail Light, and Beacon CHECK - c. Tie Down REMOVE - d. Cabin Air Inlet CHECK #### 4. LEFT FUSELAGE: - a. Static Port UNOBSTRUCTED - b. All Antennas and Lower Beacon CHECK #### 5. LEFT WING TRAILING EDGE: - a. Fuel Sump Aft of Wheel Well DRAIN - b. Fuel Vents CHECK - c. Flaps CHECK GENERAL CONDITION - d. Aileron CHECK CONDITION AND FREEDOM OF MOVEMENT, TAB NEUTRAL WHEN AILERON NEUTRAL 4-4 June 1982 #### 6. LEFT WING LEADING EDGE - a. Lights and Deice Boot CHECK FOR CONDITION - b. Stall Warning Vane CHECK FREEDOM OF MOVEMENT - c. Fuel CHECK QUANTITY AND SECURE CAPS - d. Pitot REMOVE COVER, EXAMINE FOR OB-STRUCTIONS - e. Tie Down, Chocks REMOVE - f. Engine Oil CHECK QUANTITY, CAP AND DOOR SECURE - g. Engine Cowling and Doors CHECK CONDITION AND SECURITY - h. Engine Air Intake EXAMINE FOR OBSTRUC-TIONS - Propeller EXAMINE FOR NICKS, SECURITY AND OIL LEAKS - j. Cowl Flap CHECK - k. Wheel Well Doors, Tire, Brake Line and Shock Strut CHECK - I. Landing Gear Uplock Roller CHECK - m. Fuel Drains DRAIN (3) #### 7. NOSE SECTION - a. Wheel Well Doors, Tire and Shock Strut CHECK - b. Heater Fuel Strainer DRAIN - c. Taxi Light CHECK - d. Heater Air Inlets CLEAR - e. Oxygen CHECK - f. Baggage Door SECURE #### 8. RIGHT WING LEADING EDGE - a. Wheel Well Doors, Tire, Brake Line, and Shock Strut CHECK - b. Landing Gear Uplock Roller CHECK - c. Cowl Flap CHECK - d. Fuel Drains DRAIN
(3) - e. Engine Oil CHECK QUANTITY, CAP AND DOOR SECURE - f. Engine Cowling and Doors CHECK CONDITION AND SECURITY - g. Propeller EXAMINE FOR NICKS, SECURITY AND OIL LEAKS - h. Engine Air Intake EXAMINE FOR OBSTRUC-TIONS - i. Fuel CHECK QUANTITY AND SECURE CAPS - j. Tie Down and Chocks REMOVE - k. Lights and Deice Boot CHECK FOR CONDITION #### 9. RIGHT WING TRAILING EDGE - a. Aileron CHECK CONDITION AND FREEDOM OF MOVEMENT - b. Fuel Vents CHECK - c. Fuel Sump Aft of Wheel Well DRAIN - d. Flaps CHECK GENERAL CONDITION #### NOTE Check operation of lights if night flight is anticipated. #### CAUTION DO NOT TAXI WITH A FLAT SHOCK STRUT. 4-6 June 1982 #### BEFORE STARTING - 1. Seats POSITION AND LOCK; Seat Backs UPRIGHT - 2. Rudder Pedals ADJUST - 3. Seat Belts FASTEN AND ADJUST Shoulder Harnesses (if installed) FASTEN AND ADJUST - 4. Parking Brake SET - 5. All Avionics OFF - 6. Oxygen CHECK QUANTITY AND OPERATION - 7. Landing Gear Handle DOWN - 8. Cowl Flap Switches CHECK, OPEN. Check position light ON (if installed) - 9. Fuel Selector Valves CHECK OPERATION THEN SET TO MAIN - All Circuit Breakers, Switches and Equipment Controls - CHECK - Battery Switch and Generator Switches ON (if external power is used, Generator Switches - OFF) - 12. Fuel Quantity Indicators CHECK QUANTITY MAIN AND AUXILIARY. Fuel quantity selector switch to MAIN. (See LIMITATIONS for take-off fuel) - 13. Landing Gear Position Lights CHECK #### STARTING - 1. Throttle Position APPROXIMATELY 1/2 IN. OPEN - 2. Propeller Control LOW PITCH (High RPM) - 3. Mixture Control FULL RICH #### NOTE If the engine is hot, and the ambient temperature is 90°F or above, place mixture control in IDLE CUT-OFF, switch fuel boost pump to ON (HIGH) for 30 to 60 seconds, then OFF. Return mixture control to FULL RICH. - 4. Fuel Boost Pump ON (HIGH) (until pressure stabilizes then OFF) - Magneto/Start Switch START (Observe Starter Limits) #### CAUTION Do not engage starter for more than 30 seconds in any 4-minute period. #### NOTE In the event of a balked start (or overprime condition) place mixture control in IDLE CUT-OFF and open the throttle; operate the starter to remove excess fuel. As engine starts, reduce the throttle to idle rpm and place the mixture control in FULL RICH. - 6. Warm-up 800 to 1200 RPM - 7. Oil Pressure 25 PSI WITHIN 30 SECONDS - 8. External Power (if used) DISCONNECT 4-8 June 1982 #### WARNING When using external power, start the right engine first. Disconnect external power before starting left engine. - 9. Generator Switch ON - 10. All Engine Indicators CHECK #### CAUTION If the total of both loadmeters exceeds .2 after two minutes at 1000-1200 rpm, with no additional electrical equipment on, and the indication shows no signs of decreasing, an electrical malfunction is indicated. The battery master and both alternator switches should be placed in the OFF position. Do not take off. #### CAUTION Low voltage, high ammeter or loadmeter readings, dimming of lights, or excessive noise in radio receivers could be indications that problems are developing in the starter system. A noted change in such normal conditions could indicate prolonged starter motor running and the engine should be shut down. No further flight operations should be attempted until the cause is determined and repaired. 11. Using the same procedure, start other engine. #### AFTER STARTING AND TAXI #### NOTE Do not operate engine above 1200 RPM until oil temperature reaches 75°F. - 1. Brakes RELEASE AND CHECK - 2. Avionics ON, AS REQUIRED - 3. Exterior Lights AS REQUIRED #### **BEFORE TAKE-OFF** - 1. Seat Belts and Shoulder Harnesses CHECK - 2. Fuel Boost Pumps OFF (If ambient temperature is 90°F or above, use LOW pressure boost if so equipped) - 3. All Instruments CHECKED - 4. Fuel Selector Valves CHECK (MAIN TANKS) - 5. Mixture FULL RICH (or as required by field elevation) - 6. Propellers EXERCISE AT 2200 RPM #### CAUTION When exercising propellers in their governing range, do not move the control lever aft past the detent. To do so will allow the propeller to change rapidly to the full feathered position, imposing high stresses on the blade shank and engine. - 7. Loadmeters CHECK for proper indication - 8. Throttles 1700 RPM - Magnetos CHECK (Variance between individual magnetos should not exceed 50 rpm, max. drop 150 rpm) - 10. Throttles 1500 RPM 4-10 June 1982 ## BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 ## Section IV Normal Procedures - 11. Propellers FEATHERING CHECK (Do not allow an rpm drop of more than 500 rpm) - 12. Throttles IDLE - 13. Friction ADJUST - 14. Trim AS REQUIRED FOR TAKE-OFF - 15. Flaps CHECK AND SET FOR TAKE-OFF - 16. Flight Controls CHECK PROPER DIRECTION, FULL TRAVEL AND FREEDOM OF MOVEMENT - 17. Doors and Windows LOCKED - 18. Parking Brake OFF #### TAKE-OFF | Take-Off Power Full throttle, 2625 rpm | |---| | Minimum Take-Off Oil Temperature 75°F | | 1. Power - SET TAKE-OFF POWER (MIXTURE - SET FUEL PRESSURE TO ALTITUDE) BEFORE BRAKE RE-
LEASE | | 2. Airspeed - ACCELERATE TO AND MAINTAIN REC-
OMMENDED SPEED | | Landing Gear - RETRACT (when positive rate of
climb is established) | | 4. Airspeed - ESTABLISH DESIRED CLIMB SPEED (when clear of obstacles) | INTENTIONALLY LEFT BLANK 4-12 June 1982 #### MAXIMUM PERFORMANCE CLIMB - 1. Power SET MAXIMUM CONTINUOUS POWER - 2. Mixtures LEAN TO APPROPRIATE FUEL PRESSURE - 3. Cowl Flaps OPEN - 4. Airspeed ESTABLISH 101 kts/116 mph #### **CRUISE CLIMB** - 1. Power SET (25.0 in. Hg or Full Throttle 2500 RPM) - 2. Mixture Controls LEAN TO APPROPRIATE FUEL PRESSURE - 3. Airspeed 123 kts/142 mph - 4. Cowl Flaps AS REQUIRED #### NOTE In high ambient temperatures (on airplanes with a two speed boost pump), low pressure boost may be required to prevent excessive fuel flow fluctuations. #### CRUISE Maximum Cruise Power 24.5 in. Hg at 2450 rpm Recommended Cruise Power . 24.0 in. Hg at 2300 rpm Recommended Cruise Power . 22.0 in. Hg at 2200 rpm Economy Cruise Power 20.0 in. Hg at 2100 rpm - Power SET AS DESIRED (Use Tables in PERFORM-ANCE section) - 2. Fuel Flow LEAN AS REQUIRED - 3. Cowl Flaps AS REQUIRED ## LEANING USING THE EXHAUST GAS TEMPERATURE INDICATOR (EGT) A thermocouple type exhaust gas temperature (EGT) probe is mounted in the system. This probe is connected to an indicator on the instrument panel. The indicator is calibrated in degrees Fahrenheit. Use EGT system to lean the fuel/air mixture when cruising at maximum cruise power or less. - 1. Lean the mixture and note the point on the indicator that the temperature peaks and starts to fall. - a. CRUISE (LEAN) MIXTURE Increase the mixture until the EGT shows a drop of 25°F below peak on the rich side of peak. - BEST POWER MIXTURE Increase the mixture until the EGT shows a drop of 100°F below peak on the rich side of peak. #### CAUTION Do not continue to lean mixture beyond that necessary to establish peak temperature. - 2. Continuous operation is recommended at 25°F or more below peak EGT only on the rich side of peak. - 3. Changes in altitude and power settings require the peak EGT to be rechecked and the mixture reset. #### DESCENT - 1. Altimeter SET - 2. Cowl Flaps CLOSED - 3. Windshield Defroster AS REQUIRED 4-14 June 1982 ### BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 ## Section IV Normal Procedures - 4. Power AS REQUIRED (avoid prolonged idle settings and low cylinder head temperatures) - Fuel Selector Valves MAIN #### Recommended descent speeds: | Smooth air | 172 | kts/198 | mph | |-----------------|-----|---------|-----| | Rough air (Max. | 157 | kts/181 | mph | #### **BEFORE LANDING** - Seat Belts FASTENED, SEAT BACKS UPRIGHT (Shoulder Harnesses if installed - FASTENED) - 2. Fuel Selector Valves CHECK (MAIN TANKS) - 3. Fuel Boost Pumps OFF, OR LOW AS PER AMBIENT TEMPERATURE - 4. Cowl Flaps AS REQUIRED - Mixture Controls FULL RICH (or as required by field elevation) - 6. Landing Gear DOWN - 7. Flaps DOWN - 8. Airspeed ESTABLISH NORMAL LANDING APPROACH SPEED. - 9. Propellers LOW PITCH (High RPM) #### **BALKED LANDING** - 1. Propellers LOW PITCH (high rpm) - 2. Power MAXIMUM ALLOWABLE - Airspeed BALKED LANDING CLIMB SPEED (88 KTS/101 MPH) - 4. Flaps UP (0°) - 5. Landing Gear UP - 6. Cowl Flaps AS REQUIRED #### AFTER LANDING - 1. Landing and Taxi Lights AS REQUIRED - 2. Flaps UP - 3. Trim Tabs SET TO ZERO - 4. Cowl Flaps OPEN - 5. Fuel Boost Pumps AS REQUIRED #### SHUT DOWN - 1. Parking Brake SET - 2. Propellers LOW PITCH (High RPM) - 3. Throttles 1000 RPM - 4. Fuel Boost Pumps OFF - 5. Electrical and Avionics Equipment OFF - 6. Mixture Controls IDLE CUT-OFF - 7. Magneto/Start Switches OFF, AFTER ENGINES STOP - 8. Battery and Generator Switches OFF - 9. Controls LOCKED - 10. If airplane is to be parked for an extended period of time, install wheel chocks and release the parking brake, as greatly varying ambient temperatures may build excessive pressures on the hydraulic system. #### OXYGEN SYSTEM #### WARNING NO SMOKING permitted when using oxygen. #### **PREFLIGHT** Open the access door in the lower right hand side of the cabin's aft bulkhead and SLOWLY open the high pressure shut-off valve on the oxygen cylinder. 4-16 June 1982 #### CAUTION If the shut-off valve is opened too rapidly, the regulator diaphragm may be ruptured or other damage common to high pressure oxygen systems may occur. - 2. Check Oxygen Pressure Gage for pressure reading. - 3. Determine percent of full system. - 4. Multiply oxygen duration in minutes by percent of full system. #### **EXAMPLE:** | People | 5 | |-------------------------------|-------------| | Gage Pressure | 1500 psi | | Percent Capacity (from chart) | 80% | | Cylinder Capacity (full) | 48 cu ft | | Altitude (planned flight) | 15,000 feet | | Duration (full cylinder) | 120 minutes | | Duration (80% full) | 96 minutes | ## OXYGEN AVAILABLE WITH PARTIALLY FULL BOTTLE #### OXYGEN
DURATION The recommended masks are provided with the system. They are designed to be adjustable to fit the average person, with minimum leakage of oxygen. #### CAUTION Since 90% of the system efficiency is determined by the fit of the oxygen mask, make certain the masks fit properly and are in good condition. **OXYGEN DURATION CHART** Duration in minutes at the following altitudes: | | Persons
Using | 12,500 | 15,000 | 20,000 | |----------|------------------|--------|--------|--------| | | 1 | 411 | 396 | 360 | | [# ⋅ | 2 | 231 | 222 | 204 | | Cu | 3 | 162 | 156 | 144 | | 1 | 4 | 123 | 120 | 114 | | 38 | 5 | 99 | 96 | 90 | | | 6 | 82 | 80 | 74 | | | 1 | 516 | 498 | 456 | | ≠ | 2 | 291 | 282 | 258 | | 48 cu | 3 | 204 | 198 | 180 | | | 4 | 156 | 150 | 138 | | | 5 | 126 | 120 | 114 | | | 6 | 105 | 99 | 97 | 4-18 June 1982 #### IN FLIGHT The use of oxygen is recommended to be in accordance with current FAR operating rules. - Insert an oxygen mask plug-in coupling into an oxygen outlet. - Check for flow of oxygen into the mask by closing off the opening from the breather bag to the mask, noting that the bag expands. Changes in flow rate will be made automatically with changes in pressure altitude. - 3. Adjust the oxygen mask to the face to prevent the escape of oxygen into the cabin. #### AFTER USING - 1. Close the high pressure shut-off valve. - 2. With one or more masks still plugged in, allow the oxygen to drain from the low pressure side of the system. - 3. Unplug all masks. #### **COLD WEATHER OPERATION** #### PREFLIGHT INSPECTION In addition to the normal preflight exterior inspection, remove ice, snow and frost from the wings, tail, control surfaces and hinges, propellers, windshield, fuel cell filler caps and fuel vents. If you have no way of removing these formations of ice, snow, and frost leave the airplane on the ground, as these deposits will not blow off. The wing contour may be changed by these formations sufficiently that its lift qualities are considerably disturbed and sometimes completely destroyed. Complete your normal preflight procedures. Check the flight controls for complete freedom of movement. Conditions for accumulating moisture in the fuel tanks are most favorable at low temperatures due to the condensation increase and the moisture that enters as the system is serviced. Therefore, close attention to draining the fuel system will assume particular importance during cold weather. #### **ENGINES** Use engine oil in accordance with Consumable Materials in the SERVICING section. Always pull the propeller through by hand several times to clear the engine and "limber up" the cold, heavy oil before using the starter. This will also lessen the load on the battery if an auxiliary power unit is not used. Under very cold conditions, it may be necessary to preheat the engine prior to a start. Particular attention should be applied to the oil cooler, and engine sump to insure proper preheat. A start with congealed oil in the system may produce an indication of normal pressure immediately after the start, but then the oil pressure may decrease when residual oil in the engine is pumped back with the congealed oil in the sump. If an engine heater capable of heating both the engine sump, and cooler is not available, the oil should be drained while the engines are hot and stored in a warm area until the next flight. If there is no oil pressure within the first 30 seconds of running, or if oil pressure drops after a few minutes of ground operation, shut down and check for broken oil lines, oil cooler leaks or the possibility of congealed oil. 4-20 June 1982 ## BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 ### Section IV Normal Procedures #### NOTE It is advisable to use external power for starting in cold weather. During warm-up, watch engine temperatures closely, since it is quite possible to exceed the cylinder head temperature limit in trying to bring up the oil temperature. Exercise the propellers several times to remove cold oil from the pitch change mechanisms. The propellers should also be cycled occasionally in flight. During letdown and landing, give special attention to engine temperatures, since the engines will have a tendency toward overcooling. #### **EXTERNAL POWER** It is very important that the following precautions be observed while using external power. - 1. The airplane has a negative ground system. Be sure to connect the positive lead of the auxiliary power unit to the center post of the airplane's external power receptacle and the negative lead of the auxiliary power unit to the other large post. - 2. To prevent arcing, make certain no power is being supplied when the connection is made. - Make certain that the battery switch is ON, all avionics and electrical switches OFF, and a battery is in the system before connecting an external power unit. This protects the voltage regulators and associated electrical equipment from voltage transients (power fluctuations). ### STARTING ENGINES USING AUXILIARY POWER UNIT - 1. Battery switch ON - 2. Generators, Electrical, and Avionics Equipment OFF - 3. Auxiliary Power Unit CONNECT - 4. Auxiliary Power Unit SET OUTPUT (27.0 to 28.5 volts) - 5. Auxiliary Power Unit ON - 6. Right Engine START (use normal start procedures) - 7. Auxiliary Power Unit OFF (after engine has been started) - 8. Auxiliary Power Unit DISCONNECT (before starting left engine) - 9. Generator Switches ON #### TAXIING Avoid taxiing through water, slush or muddy surfaces if possible. In cold weather, water, slush or mud, when splashed onto landing gear mechanisms or control surface hinges may freeze, preventing free movement and resulting in structural damage. ### ICE PROTECTION SYSTEMS The following equipment, when installed and operable, will provide a degree of protection when icing conditions are inadvertently encountered. Since this equipment has not been demonstrated to meet current requirements for flight into known icing conditions, the pilot must exit such conditions as soon as possible if ice accumulates on the airplane. - 1. Equipment required for IFR flight - 2. Beech approved emergency static air source - 3. Beech approved surface deice system - 4. Beech approved propeller deice or anti-ice system - 5. Beech approved pitot heat - 6. Beech approved heated stall warning - 7. Beech approved heated fuel vents - 8. Beech approved windshield defogging and openable storm window - 9. Beech approved alternate induction air - 10. Beech approved external antenna masts (capable of withstanding ice loads) #### WARNING Stalling airspeeds should be expected to increase due to the distortion of the wing airfoil when ice has accumulated on the airplane. For the same reason, stall warning devices are not accurate and should not be relied upon. With ice on the airplane, maintain a comfortable margin of airspeed above the normal stall airspeed. ## 1. ALTERNATE (EMERGENCY) STATIC AIR SOURCE If the Emergency Static Air Source is desired for use: - Emergency Static Air Source Valve OPEN (lower sidewall adjacent to pilot) - For Airspeed Calibration and Altimeter Corrections, refer to PERFORMANCE section #### CAUTION The emergency static air valve should be in the CLOSED position when the system is not needed. ### 2 FLECTROTHERMAL PROPELLER DEICE #### **CAUTION** Do not operate the propeller deice when propellers are static. #### a. BEFORE TAKEOFF - (1) Propeller Deice Switch ON - (2) Propeller Deice Ammeter CHECK, 7 to 12 amps #### b. IN FLIGHT - (1) Propeller Deice Switch ON. The system may be operated continuously in flight and will function automatically until the switch is turned OFF. - (2) Relieve propeller imbalance due to ice by increasing rpm briefly and returning to the desired setting. Repeat as necessary. #### CAUTION If the propeller deice ammeter indicates abnormal reading, refer to the Emergency Procedures section. ## 3. PROPELLER ANTI-ICE SYSTEM (FLUID FLOW) #### CAUTION This anti-ice system is designed to PREVENT the formation of ice. Always turn the system ON before entering icing conditions. ### BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 ## Section IV Normal Procedures #### a. PREFLIGHT - (1) Check the quantity in reservoir - (2) Check slinger ring and lines for obstructions - (3) Check propeller boots for damage #### b. IN FLIGHT - (1) Prop Anti-ice Switch ON - (2) Anti-ice Quantity Indicator MONITOR #### NOTE See SYSTEM description for endurance. #### 4. PITOT HEAT AND HEATED STALL WARNING a. Pitot Heat Switch - ON (Note deflection on Loadmeter) Heated Stall Warning is activated by the pitot heat switch. #### NOTE Switch may be left on throughout flight. Prolonged operation on the ground could damage the Pitot Heat System. #### 5. WINDSHIELD DEFOGGING - a. Defrost Control PUSH ON - b. Pilot's Storm Window OPEN, AS REQUIRED #### ENGINE BREAK-IN INFORMATION Refer to Systems section. ## PRACTICE DEMONSTRATION OF V_{MCA} V_{MCA} demonstration may be required for multi-engine pilot certification. The following procedure shall be used at a safe altitude of at least 5000 feet above the ground in clear air only. #### WARNING INFLIGHT ENGINE CUTS BELOW VSSE SPEED OF 84 KTS/97 MPH ARE PROHIBITED. - 1. Landing Gear Up - 2. Flaps Up - 3. Airspeed Above 84 kts/97 mph (VSSE) - 4. Propeller Levers LOW PITCH (High RPM) - 5. Throttle (Simulated inoperative engine) Idle - 6. Throttle (Other engine) Maximum Manifold Pressure - Airspeed Reduce approximately 1 knot per second until either V_{MCA} or stall warning is obtained. #### CAUTION Use rudder to maintain directional control (heading) and ailerons to maintain 5° bank towards the operative engine (lateral attitude). At the first sign of either VMCA or stall warning (which may be evidenced by: inability to maintain heading or lateral attitude, aerodynamic stall buffet, or stall warning horn sound) immediately initiate recovery: reduce power to idle on the operative engine and immediately lower the nose to regain
V_{SSE}. 4-26 June 1982 ## **SECTION III** ## **EMERGENCY PROCEDURES** ## **TABLE OF CONTENTS** | SUBJECT | PAGE | |--|--------------| | Emergency Airspeeds | 3-4
3-4 | | Engine Failure During Take-Off Engine Failure After Lift-off and | 3-4 | | In Flight | | | Engine Fire | 3-7 | | In Flight | 3-8 | | Landing Emergencies | 3-9 | | One-Engine Inoperative Landing | | | Systems Emergencies | 3-10 | | Electrical Smoke or Fire | 3-10
3-11 | | Landing Gear Retraction After | 3-12
3-13 | ## BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 ## TABLE OF CONTENTS (Continued) | SUBJECT | PAGE | |---|------| | Ice Protection | 3-13 | | Electrothermal Propeller Deice | | | System | 3-13 | | Alternate (Emergency) Static Air Source | | | System | 3-14 | | Emergency Exits | 3-15 | | Unlatched Door in Flight | 3-15 | | Simulated One-Engine Inoperative | 3-16 | | Spins | | 3-2 Revised: March 1983 ## BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 ## Section III Emergency Procedures All airspeeds quoted in this section are indicated airspeeds (IAS) and assume zero instrument error. #### **EMERGENCY AIRSPEEDS** Air Minimum Control Speed (V_{MCA}) ... 78 kts/90 mph Intentional One Engine Inoperative Speed (V_{SSE}) 84 kts/97 mph Best Rate-of-Climb Speed One-Engine Inoperative (V_Y) 100 kts/115 mph Best Angle-of-Climb Speed One-Engine Inoperative (V_X) 91 kts/105 mph Landing - One Engine Inoperative: Maneuvering to Final Approach 107 kts/123 mph (minimum) Final Approach 90 kts/104 mph (minimum) Stall warning horn is inoperative when the Battery and Generator switches are turned off. The following information is presented to enable the pilot to form, in advance, a definite plan of action for coping with the most probable emergency situations which could occur in the operation of the airplane. Where practicable, the emergencies requiring immediate corrective action are treated in check list form for easy reference and familiarization. Other situations, in which more time is usually permitted to decide on and execute a plan of action, are discussed at some length. In order to supply one safe speed for each type of emergency situation, the airspeeds presented were derived at 4880 lbs. #### ONE ENGINE OPERATION Two major factors govern one engine operations; airspeed and directional control. The airplane can be safely maneuvered or trimmed for normal hands-off operation and sustained in this configuration by the operative engine AS LONG AS SUFFICIENT AIRSPEED IS MAINTAINED. #### **DETERMINING INOPERATIVE ENGINE** The following checks will help determine which engine has failed. - DEAD FOOT DEAD ENGINE. The rudder pressure required to maintain directional control will be on the side of the good engine. - THROTTLE. Partially retard the throttle for the engine that is believed to be inoperative; there should be no change in control pressures or in the sound of the engine if the correct throttle has been selected. AT LOW ALTITUDE AND AIRSPEED THIS CHECK MUST BE AC-COMPLISHED WITH EXTREME CAUTION. Do not attempt to determine the inoperative engine by means of the tachometers or the manifold pressure gages. These instruments often indicate near normal readings. #### ONE-ENGINE INOPERATIVE PROCEDURES ENGINE FAILURE DURING TAKE-OFF 1. Throttle - CLOSED 2. Braking - MAXIMUM 3-4 June 1982 If insufficient runway remains for stopping: - 3. Fuel Selector Valves OFF - 4. Battery, Generator and Magneto/Start Switches OFF ## ENGINE FAILURE AFTER LIFT-OFF AND IN FLIGHT An immediate landing is advisable regardless of take-off weight. Continued flight cannot be assured if take-off weight exceeds the weight determined from the TAKE-OFF WEIGHT graph. Higher take-off weights will result in a loss of altitude while retracting the landing gear and feathering the propeller. Continued flight requires immediate pilot response to the following procedures. - 1. Landing Gear and Flaps UP - 2. Throttle (inoperative engine) CLOSED - 3. Propeller (inoperative engine) FEATHER - 4. Power (operative engine) AS REQUIRED - 5. Airspeed MAINTAIN SPEED AT ENGINE FAILURE (100 KTS (115 MPH) MAX.) UNTIL OBSTACLES ARE CLEARED After positive control of the airplane is established: - 6. Secure inoperative engine: - a. Mixture Control IDLE CUT-OFF - b. Fuel Selector OFF - c. Fuel Boost Pump OFF - d. Magneto/Start Switch OFF - e. Generator Switch OFF - f. Cowl Flap CLOSED 7. Electrical Load - MONITOR (Do not exceed generator capacity) #### NOTE The most important aspect of engine failure is the necessity to maintain lateral and directional control. If airspeed is below 78 kts (90 mph), reduce power on the operative engine as required to maintain control. Refer to the SAFETY INFORMATION Section for additional information regarding pilot technique. #### AIR START #### **CAUTION** The pilot should determine the reason for engine failure before attempting an air start. - 1. Fuel Selector Valve MAIN OR AUXILIARY - 2. Throttle SET approximately 1/4 travel - 3. Mixture Control FULL RICH, below 5000 ft (1/2 travel above 5,000 ft) - 4. Fuel Boost Pump ON (LOW) - 5. Magnetos CHECK ON - 6. Propeller: #### WITH UNFEATHERING ACCUMULATORS: - Move propeller control full forward to accomplish unfeathering. Use starter momentarily if necessary. - b. Return control to high pitch (low rpm) position when windmilling starts, to avoid overspeed. 3-6 June 1982 If propeller does not unfeather or engine does not turn, proceed to WITHOUT UNFEATHERING ACCUMULATORS procedure. #### WITHOUT UNFEATHERING ACCUMULATORS: - a. Move propeller control forward of the feathering detent to midrange - b. Engage Starter to accomplish unfeathering - c. If engine fails to run, clear engine by allowing it to windmill with mixture in IDLE CUT-OFF. When engine fires, advance mixture to FULL RICH - 7. When Engine Starts ADJUST THROTTLE, PRO-PELLER and MIXTURE CONTROLS - Fuel Boost Pump OFF (when reliable power has been regained) - 9. Generator Switch ON - 10. Oil Pressure CHECK - Warm Up Engine (approximately 2000 rpm and 15 in. Hg) - 12. Set power as required and trim #### ENGINE FIRE #### ON THE GROUND - 1. Mixture Controls IDLE CUT-OFF - 2. Continue to crank affected engine - 3. Fuel Selector Valves OFF - 4. Battery and Generator Switches OFF - 5. Extinguish with Fire Extinguisher #### IN FLIGHT Shut down the affected engine according to the following procedure and land immediately. Follow the applicable single-engine procedures in this section. - 1. Fuel Selector Valve OFF - 2. Mixture Control IDLE CUT-OFF - 3. Propeller FEATHERED - 4. Fuel Boost Pump OFF - 5. Magneto/Start Switch OFF - 6. Generator Switch OFF ## **EMERGENCY DESCENT** - 1. Propellers 2625 RPM - 2. Throttles CLOSED - 3. Airspeed 143 kts (165 mph) - 4. Landing Gear DOWN - 5. Flaps UP #### GLIDE - 1. Propellers FEATHER - 2. Flaps UP - 3. Landing Gear UP - 4. Cowl Flaps CLOSED The glide ratio in this configuration is approximately 2 nautical miles of gliding distance for each 1000 feet of altitude above the terrain at an airspeed of 120 kts (138 mph). 3-8 June 1982 #### LANDING EMERGENCIES #### GEAR-UP LANDING If possible, choose firm sod or foamed runway. When assured of reaching landing site: - Cowl Flaps CLOSED - 2. Wing Flaps AS DESIRED - 3. Throttles CLOSED - 4. Fuel Selector Valves OFF - 5. Mixture Controls IDLE CUT-OFF - 6. Battery, Generator and Magneto/Start Switches OFF - 7. Keep wings level during touchdown. - Get clear of the airplane as soon as possible after it stops. #### NOTE The gear-up landing procedures are based on the best available information and no actual tests have been conducted. #### ONE-ENGINE-INOPERATIVE LANDING On final approach and when it is certain that the field can be reached: - 1. Landing Gear DOWN - 2. Flaps AS REQUIRED - 3. Airspeed 90 kts/104 mph - Power AS REQUIRED to maintain 800 ft/min rate of descent When it is certain there is no possibility of go-around: - 5. Flaps DOWN - 6. Execute normal landing June 1982 3-9 ### ONE-ENGINE-INOPERATIVE GO-AROUND #### WARNING Level flight might not be possible for certain combinations of weight, temperature and altitude. In any event, DO NOT attempt a one-engine-inoperative go-around after flaps have been fully extended. - 1. Power MAXIMUM ALLOWABLE - 2. Landing Gear UP - 3. Flaps UP - 4. Airspeed MAINTAIN 100 kts (115 mph) MINIMUM ### SYSTEMS EMERGENCIES ONE-ENGINE-INOPERATIVE OPERATION ON CROSSFEED #### NOTE The fuel crossfeed system is to be used only during emergency conditions in level flight only. ## Left engine inoperative: - 1. Right Fuel Boost Pump ON (LOW) - 2. Left Fuel Selector Valve MAIN OR AUXILIARY - 3. Right Fuel Selector Valve CROSSFEED - 4. Right Fuel Boost Pump ON or OFF as required 3-10 June 1982 # Section III Emergency Procedures Right engine inoperative: - 1. Left Fuel Boost Pump ON (LOW) - 2. Right Fuel Selector Valve MAIN OR AUXILIARY - 3. Left Fuel Selector Valve CROSSFEED - 4. Left Fuel Boost Pump LOW or OFF as required #### ELECTRICAL SMOKE OR FIRE Action to be taken must consider existing conditions and equipment installed: 1. Battery and Generator Switches - OFF #### WARNING Electrically driven flight instruments will become inoperative. - 2. Oxygen AS REQUIRED - 3. All Electrical Switches OFF - 4. Battery and Generator Switches ON - Essential Electrical Equipment ON (Isolate defective equipment) #### NOTE Ensure fire is out and will not be aggravated by draft. Turn off CABIN HEAT switch and push in the CABIN AIR control. Open pilot's storm window, if required. June 1982 3-11 #### LANDING GEAR MANUAL EXTENSION Reduce airspeed before attempting manual extension of the landing gear. - 1. LG MOTOR Circuit Breaker PULL - 2. Landing Gear Handle DOWN - Remove cover from handcrank at rear of front seats. Engage handcrank and turn counterclockwise as far as possible (approximately 50 turns). Stow handcrank. - Check
mechanical indicator to ascertain that gear is down. - 5. If electrical system is operative, check landing gear position light and warning horn (check LG RELAY circuit breaker engaged). #### CAUTION The manual extension system is designed only to lower the landing gear; do not attempt to retract the gear manually. #### WARNING Do not operate the landing gear electrically with the handcrank engaged, as damage to the mechanism could occur. After emergency landing gear extension, do not move any landing gear controls or reset any switches or circuit breakers until airplane is on jacks, as failure may have been in the gear-up circuit and gear might retract with the airplane on the ground. 3-12 June 1982 # Section III Emergency Procedures # LANDING GEAR RETRACTION AFTER PRACTICE MANUAL EXTENSION After practice manual extension of the landing gear, the gear may be retracted electrically, as follows: - 1. Handcrank CHECK, STOWED - 2. Landing Gear Motor Circuit Breaker IN - 3. Landing Gear Handle UP #### ICE PROTECTION # ELECTROTHERMAL PROPELLER DEICE SYSTEM Loss of one generator; turn off unnecessary electrical equipment. Turn the prop deice system off while operating the cabin heater blower or the landing gear motor. Monitor electrical loads so as not to exceed generator capacity. An abnormal reading on the Propeller Deice Ammeter indicates need for the following action: ## a. Zero Amps: Check prop deice circuit breaker. If the circuit breaker has tripped, a wait of approximately 30 seconds is necessary before resetting. If ammeter reads 0 and the circuit breaker has not tripped or if the ammeter still reads 0 after the circuit breaker has been reset, turn the switch off and consider the prop deice system inoperative. June 1982 3-13 ## b. Zero to 7 Amps: If the prop deice system ammeter occasionally or regularly indicates less than 7 amps, operation of the prop deice system can continue unless serious propeller imbalance results from irregular ice throw-offs. ## c. 12 to 15 Amps: If the prop deicing system ammeter occasionally or regularly indicates 12 to 15 amps, operation of the prop deice system can continue unless serious propeller imbalance results from irregular ice throw-offs. ## d. More than 15 Amps: If the prop deice system ammeter occasionally or regularly indicates more than 15 amps, the system should not be operated unless the need for prop deicing is urgent. # ALTERNATE (EMERGENCY) STATIC AIR SOURCE SYSTEM THE EMERGENCY STATIC AIR SOURCE SHOULD BE USED FOR CONDITIONS WHERE THE NORMAL STATIC SOURCE HAS BEEN OBSTRUCTED. When the airplane has been exposed to moisture and/or icing conditions (especially on the ground), the possibility of obstructed static ports should be considered. Partial obstructions will result in the rate of climb indication being sluggish during a climb or descent. Verification of suspected obstruction is possible by switching to the emergency system and noting a sudden sustained change in rate of climb. This may be accompanied by abnormal indicated airspeed and altitude changes beyond normal calibration differences. 3-14 June 1982 3-15 Whenever any obstruction exists in the Normal Static Air System or the Emergency Static Air System is desired for use: - Emergency Static Air Source Valve OPEN (lower sidewall adjacent to pilot). - 2. For Airspeed Calibration and Altimeter Corrections, refer to the PERFORMANCE section. #### CAUTION The emergency static air valve should remain in the CLOSED position when system is not needed. #### **EMERGENCY EXITS** Emergency exits, provided by the openable window on each side of the cabin, may be used for egress in addition to the cabin door and the optional cargo door. An emergency exit placard is installed below the left and right middle windows. To open each emergency exit: - 1. Lift the latch. - Pull out the emergency release pin and push the window out. #### UNLATCHED DOOR IN FLIGHT If the cabin door is not locked it may come unlatched in flight. This may occur during or just after takeoff. The door will trail in a position approximately 3 to 4 inches open. Flight characteristics of the airplane will not be affected except for a reduction in performance. Return to the field in a normal manner. If practicable, during the landing flareout have a passenger hold the door to prevent it from swinging open. Revised: March 1983 #### SIMULATED ONE ENGINE INOPERATIVE ZERO THRUST (Simulated Feather) Use the following power setting (only on one engine at a time) to establish zero thrust. Use of this power setting avoids the difficulties of restarting an engine and preserves the availability of engine power. The following procedure should be accomplished by alternating small reductions of propeller and then throttle, until the desired setting has been reached. - 1. Propeller Lever RETARD TO FEATHER DETENT - 2. Throttle Lever SET 12 in. Hg MANIFOLD PRESSURE #### NOTE This setting will approximate Zero Thrust using recommended One-Engine Inoperative Climb speeds. #### SPINS If a spin is entered inadvertently: Immediately move the control column full forward, apply full rudder opposite to the direction of the spin and reduce power on both engines to idle. These three actions should be done as near simultaneously as possible; then continue to hold this control position until rotation stops and then neutralize all controls and execute a smooth pullout. Ailerons should be neutral during recovery. #### NOTE Federal Aviation Administration Regulations did not require spin demonstration of airplanes of this weight; therefore, no spin tests have been conducted. The recovery technique is based on the best available information. 3-16 June 1982 # **SECTION II** # **LIMITATIONS** # **TABLE OF CONTENTS** | SUBJECT | PAGE | |-----------------------------------|-------| | Airspeed Limitations | . 2-3 | | Airspeed Indicator Markings | | | Power Plant Limitations | | | Engines | | | Fuel | | | Oil | | | Propellers | . 2-6 | | Starters - Time for Cranking | . 2-6 | | Power Plant Instrument Markings | . 2-7 | | Miscellaneous Instrument Markings | . 2-8 | | Weights | . 2-8 | | CG Limits | . 2-9 | | Maneuver Limits | . 2-9 | | Flight Load Factors (4800 Pounds) | . 2-9 | | Minimum Flight Crew | . 2-9 | | Kinds of Operation | 2-10 | | Fuel | 2-11 | | Fuel Management | 2-11 | | Oxygen Requirements | 2-12 | | Maximum Passenger Seating | | | Configuration | 2-12 | | Seating | 2-12 | | Placards | 2-13 | | Required Equipment for Various | | | Conditions of Flight | 2-22 | | June 1982 | 2-1 | June 1982 INTENTIONALLY LEFT BLANK 2-2 June 1982 # Section II Limitations The limitations included in this section have been approved by the Federal Aviation Administration. The following limitations must be observed in the operation of this airplane. # **AIRSPEED LIMITATIONS** | | CA | | IAS | | | | | |--|----------------|------------|------------|------------|---|--|--| | SPEED | KNOTS | MPH | KNOTS | МРН | REMARKS | | | | Never Exceed
VNE | 223 | 257 | 224 | 258 | Do not exceed
this speed in
any operation | | | | Maximum
Structural
Cruising
V _{NO} or V _C | 182 | 210 | 183 | 211 | Do not exceed this speed except in smooth air and then only with caution | | | | Maneuvering
^V A | 156 | 180 | 157 | 181 | Do not make full
or abrupt control
movements above
this speed | | | | Maximum Flap
Extension/
Extended V _{FE}
(Full down) | 113 | 130 | 113 | 130 | Do not extend
flaps or operate
with flaps ex-
tended above
this speed | | | | Maximum Landing Gear Operating/ Extended V _{LO} and V _{LE} | ① 130
② 143 | 150
165 | 130
143 | 150
165 | Do not extend, retract or operate with landing gear extended above this speed | | | | Air
Minimum
Control
Speed V _{MCA} | 80 | 92 | 78 | 90 | Minimum speed
for directional
controllability
after sudden
loss of engine | | | ① Baron 55 [@] Baron A55 June 1982 # *AIRSPEED INDICATOR MARKINGS | | C/ | \s | IΑ | s | | | | | | | |-------------|---------|-------------------|---------|---------|--|--|--|--|--|--| | MARKING | KNOTS | OTS MPH KNOTS MPH | | MPH | SIGNIFICANCE | | | | | | | White Arc | 66-113 | 76-130 | 66-113 | 76-130 | Full Flap Operating Range | | | | | | | Blue Radial | 101 | 116 | 100 | 115 | One-Engine-Inoperative
Best Rate-of-Climb Speed | | | | | | | Green Arc | 75-182 | 86-210 | 78-183 | 90-211 | Normal Operating Range | | | | | | | Yellow Arc | 182-223 | 210-257 | 183-224 | 211-258 | Operate with caution only in smooth air | | | | | | | Red Radial | 223 | 257 | 224 | 258 | Maximum speed for ALL operations | | | | | | ^{*}The Airspeed Indicator is marked in CAS values # Section II Limitations #### **POWER PLANT LIMITATIONS** #### **ENGINES** Two Continental IO-470-L fuel injected, air cooled sixcylinder, horizontally-opposed engines each rated at 260 horsepower at 2625 rpm. | Take-off and Maximum | |--| | continuous power Full throttle, 2625 rpm | | | | | | Maximum Cylinder Head Temperature 460°F | | Maximum Oil Temperature 225°F | | Minimum Take-off Oil Temperature 75°F | | Minimum Oil Pressure (Idle) 30 psi | | Maximum Oil Pressure 80 psi | #### **FUEL** Aviation Gasoline 100LL (blue) preferred, 100 (green) minimum grade. #### OIL Ashless dispersant oils must meet Continental Motors Corporation Specification MHS-24B. Refer to APPROVED ENGINE OILS, Servicing Section. June 1982 2-5 # Section II Limitations # BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 **PROPELLERS** #### McCAULEY 2 Blade Hubs: 2AF36C39 Blades: 78BF-0 or 78BFM-0 Pitch Setting at 30 inch Station: Low 14.6°; High 83.0° Diameter: 78 inches maximum, 76 inches minimum or 2 Blade Hubs: 2AF36C89 Blades: 78BFS-0 Pitch Setting at 30 inch Station: Low 15°; High 79°
Diameter: 78 inches maximum, 76 inches minimum or 2 Blade Hubs: 2AF34C55 Blades: 78FF-0 Pitch Setting at 30 inch Station: Low 15°; High 79° Diameter: Maximum 78 inches, minimum 76 inches #### NOTE Other propellers are approved and are listed in the FAA Aircraft Specification 3A16 or are approved by Supplemental Type Certificate. #### STARTERS - TIME FOR CRANKING Do not operate starter continuously for more than 30 seconds. Allow starter to cool before cranking again. 2-6 June 1982 # Section II Limitations # POWER PLANT INSTRUMENT MARKINGS | (| TEMPERATURE Caution (Yellow Radial) | 75°F | |--------|---|------| | | (Green Arc) | | | (| PRESSURE Minimum Pressure (Red Radial) | ps. | | C | L PRESSURE Minimum (Red Radial) | psi | | C | NIFOLD PRESSURE Operating Range (Green Arc) | | | C | HOMETER Operating Range (Green Arc) 2000 to 2625 Waximum (Red Radial) | | | C
N | NDER HEAD TEMPERATURE Derating Range (Green Arc) | | # MISCELLANEOUS INSTRUMENT MARKINGS | INSTRUMENT VACUUM Baron 55 | |--| | Minimum (Red Radial) 4.4 in. Hg Operating Range | | (Green Arc) | | Baron A55 Minimum (Red Radial) | | PROPELLER DEICE AMMETER Normal Operating Range | | FUEL QUANTITY Yellow Arc (22-Gal Main Tank) E to 1/2 Full Yellow Arc (37-Gal Main Tank) E to 1/4 Full | | WEIGHTS Maximum Ramp Weight | | Maximum Baggage/Cargo Compartment Weights: Main Cabin Compartment (TC-1 thru TC-399 except TC-375, TC-376, TC-377 and TC-393) (less occupants and equipment) | | Main Cabin Compartment (TC-375, TC-376, TC-377, TC-393 and TC-400 thru TC-501) | | (less occupants and equipment) 400 lbs Extended Aft Compartment 120 lbs Nose Compartment (baggage less | | equipment) | 2-8 June 1982 # Section II Limitations #### CG LIMITS Forward Limits: 74 inches aft of datum at 3800 lbs and under, then straight line variation to 79.4 inches aft of datum at gross weight of 4880 lbs. Aft Limits: 86 inches aft of datum at all weights. #### REFERENCE DATUM Datum is 83.1 inches forward of center line through forward jack points. MAC leading edge is 67.2 inches aft of datum. MAC length is 63.1 inches. ### MANEUVER LIMITS This is a normal category airplane. Acrobatic maneuvers, including spins, are prohibited. # FLIGHT LOAD FACTORS | Positive maneuvering load factors: | | | |------------------------------------|-----|-------| | Flaps Up | | 4.4G | | Negative maneuvering load factor: | | | | Flaps Up | | 3.0G | | | | | | | | | | | | | | MINIMUM FLIGHT CREW | One | pilot | | | | | | June 1982 | | 2-9 | ## KINDS OF OPERATION This airplane is approved for the following type operations when the required equipment is installed and operational as defined herein; - 1. VFR day and night - 2. IFR day and night 2-10 March, 1988 # Section II Limitations #### **FUEL** TOTAL FUEL with left and right main and auxiliary fuel systems full: ## Standard Fuel System | Capacity | | | |
 | | | | | | | | | | 112 | 2 | Gallo | ons | |----------|--|--|--|---------|--|--|--|--|--|--|--|--|--|-----|---|-------|-----| | Usable . | | | |
. , | | | | | | | | | | 100 | ô | Gallo | กร | ## Optional Fuel System | Capacity |
142 Gallons | |----------|-----------------| | Usable |
136 Gallons | #### FUEL MANAGEMENT Takeoff and land on main fuel tank only. When operating fuel selector, feel for detent position. Do not take off if Fuel Quantity Gages indicate in Yellow Arc or with less than 13 gallons in each main tank. The fuel crossfeed system to be used during emergency conditions in level flight only. Turning type takeoffs or takeoffs immediately following fast taxi turns are prohibited if the airplane is not equipped with two baffled leading edge fuel tanks or a fuel reservoir in each leading edge fuel tank or a combination of the two. # Maximum slip or skid duration: 20 seconds for airplanes with unbaffled main fuel tanks or without reservoirs in either wing. 30 seconds for airplanes with baffled main fuel tanks or reservoirs in both wings. June 1982 2-11 # **OXYGEN REQUIREMENTS** Refer to FAR 91.32 for oxygen requirements. ## MAXIMUM PASSENGER SEATING CONFIGURATION Five (5) passengers and one (1) pilot # **SEATING** All seats must be in the upright position for takeoff and landing. 2-12 June 1982 # Baron 95-55 And 95-A55 # Raytheon Aircraft # **Temporary Change** to the **Pilot's Operating Handbook** and FAA Approved Airplane Flight Manual P/N 55-590000-65BTC1 Publication Affected 95-55 And 95-A55 Pilot's Operating Handbook and FAA Approved Airplane Flight Manual (P/N 55-590000-65B, Reissued June, 1982 or Subsequent) Airplane Serial **Numbers Affected** TC-1 thru T-501 except TC-350 and TC-371 Description of Change The addition of a placard to the fuel selectors to warn of the no-flow condition that exists between the fuel selec- tor detents. Filing Instructions insert this temporary change into the 95-55 And 95-A55 Pilot's Operating Handbook and FAA Approved Airplane Flight Manual immediately following page 2-12 (Section II, LIMITATIONS) and retain until rescinded or replaced. # **Raytheon** Aircraft # LIMITATIONS ### **PLACARDS** Located On The Face Of The Fuel Selector Valves, For Those Airplanes In Compliance With S.B. 2670: WARNING - POSITION SELECTORS IN DETENTS ONLY - NO FUEL FLOW TO ENGINES BETWEEN DETENTS Approved: A.C. Jackson Raytheon Aircraft Company al Jack DOA CE-2 #### **PLACARDS** On The Pilot's Window Frame: (TC-1 thru TC-190) THIS AIRPLANE MUST BE OPERATED AS A NORMAL CATEGORY AIRPLANE IN COMPLIANCE WITH THE OPERATING LIMITATIONS STATED IN THE FORM OF PLACARDS, MARKINGS, AND MANUALS. NO ACROBATIC MANEUVERS INCLUDING SPINS APPROVED. On The Pilot's Window Frame (CAS): (TC-1 thru TC-190) #### AIRSPEED LIMITATIONS MAX SPEED WITH LANDING GEAR EXTENDED (NORMAL) 150 MPH MAX SPEED WITH FLAPS EXTENDED (NORMAL) 130 MPH MAX DESIGN MANEUVER SPEED 180 MPH MIN CONTROL SPEED SINGLE ENGINE 92 MPH Below The Ignition Switch Panel (CAS): (TC-191 thru TC-501 except TC-350 and TC-371) PLACARDS (Cont'd) On The Pilot's Window Frame: (TC-1 thru TC-190) # EMERGENCY LANDING GEAR INSTRUCTIONS TO EXTEND ENGAGE HANDLE IN REAR OF FRONT SEAT AND TURN COUNTERCLOCKWISE AS FAR AS POSSIBLE (50 TURNS). On Carpet Cover Between Pilot and Copilot's Chairs: (TC-191 thru TC-391 except TC-350 and TC-371) # EMERGENCY LANDING GEAR INSTRUCTIONS TO EXTEND ENGAGE HANDLE IN REAR OF FRONT SEAT AND TURN COUNTERCLOCKWISE AS FAR AS POSSIBLE (50 TURNS) On Carpet Cover Between Pilot and Copilot's Chairs: (TC-392 thru TC-501) EMERGENCY LANDING GEAR INSTRUCTIONS TO EXTEND ENGAGE HANDLE IN REAR OF FRONT SEAT AND TURN COUNTERCLOCKWISE AS FAR AS POSSIBLE (50 TURNS) On Lower Sidewall Adjacent To Pilot: (TC-1 thru TC-501 except TC-350 and TC-371, OPTIONAL) **EMERGENCY AIRSPEED STATIC SOURCE** # WARNING CLOSE STORM WINDOW SEE FLIGHT MANUAL EMERGENCY PROCEDURES FOR AIRSPEEDALTIMETER CALIBRATION ERROR On The Lower Portion Of The Floating Instrument Panel: This Placard Is Installed Only When The Airplane Is Not Equipped With Two Baffled Leading Edge Fuel Tanks Or A Fuel Reservoir In Each Leading Edge Fuel Tank Or A Baffled Leading Edge Fuel Tank On The One Side And A Reservoir Installed In The Leading Edge Tank On The Other Side TAKE OFF AND LAND ON MAIN TANKS ONLY. TURNING TYPE TAKEOFFS OR TAKEOFFS IMMEDIATELY FOLLOWING FAST TAXI TURNS PROHIBITED. REFER TO FAA FLIGHT MANUAL FOR OTHER FUEL SYSTEM LIMITATIONS On The Floating Instrument Panel: DO NOT TAKE OFF IF FUEL QUANTITY GAGES INDICATE IN YELLOW ARC OR WITH LESS THAN 13 GALLONS IN EACH MAIN TANK June 1982 2-15 ## PLACARDS (Cont'd) Around The Fuel Selector Handles: (TC-1 thru TC-180-STANDARD FUEL SYSTEM) Around The Fuel Selector Handles: (TC-3 thru TC-180-OPTIONAL FUEL SYSTEM) Between The Fuel Selector Handles: (TC-1 thru TC-180) USE AUX TANKS AND CROSSFEED IN LEVEL FLIGHT ONLY 2-16 June 1982 Between The Fuel Selector Handles: (TC-156 thru TC-180) # **CAUTION** DO NOT SELECT CROSS FEED FROM BOTH SIDES AT SAME TIME Between The Fuel Selector Handles: (TC-181 thru TC-501 except TC-350 and TC-371-STANDARD FUEL SYSTEM) Between The Fuel Selector Handles: (TC-181 thru TC-501 except TC-350 and TC-371-OPTIONAL FUEL SYSTEM) June 1982 2-17 PLACARDS (Cont'd) Oxygen Outlet: All Outlets TC-1 thru TC-357 except TC-350; 3rd, 4th, 5th and 6th Outlets TC-358 thru TC-501 except TC-371 **OXYGEN** Pilot Outlet TC-358 thru TC-501 except TC-371 PILOT OXYGEN Co-pilot Outlet TC-358 thru TC-501 except TC-371 COPILOT On Instrument Panel (TC-1 thru TC-357 except TC-350) On Oxygen Console (TC-358 thru TC-501 except TC-371) # WARNING DO NOT SMOKE WHILE OXYGEN IS IN USE HOSE PLUG MUST BE PULLED OUT TO STOP FLOW OF OXYGEN 2-18 June 1982 Adjacent To Cabin Door Handle: (TC-1 thru TC-190) CAUTION AFTER CLOSING DOOR ROTATE HANDLE TO FULL LOCKED POSITION Adjacent To Cabin Door Handle: (TC-191 thru TC-501 except TC-350 and TC-371) Below Left and Right Middle Windows after compliance with BEECHCRAFT Service Instructions 1241: # EMERGENCY EXIT LIFT LATCH - PULL PIN PUSH WINDOW OUT Revised: March 1983 PLACARDS (Cont'd) On Openable Cabin Windows: DO NOT OPEN IN FLIGHT (TC-191 thru TC-501 except TC-350 and TC-371) **LATCH WINDOW** **BEFORE TAKE-OFF** On Storm Window (CAS): # CAUTION DO NOT OPEN ABOVE 145 MPH On Fuel Selector Panel: NOTICE REMOVE WINTER BAFFLES WHEN OAT EXCEEDS 70° F ⊕ \oplus # Section II Limitations On Inside Of The Rear Baggage Compartment Door: (TC-1 thru TC-399 except TC-371, TC-375, TC-376, TC-377, TC-393 and TC-350) \oplus **MAXIMUM STRUCTURAL CAPACITY — 270 POUNDS** On Inside Of The Rear Baggage Compartment Door: (used with 5th and 6th seat installation - TC-238 thru TC-399 except TC-371, TC-375, TC-376, TC-377, TC-393 and TC-350) BAGGAGE COMPARTMENT AND/OR REAR SEATS # LOAD IN ACCORDANCE WITH AIRCRAFT FLIGHT MANUAL LOAD LIMITS TWO PASSENGERS COMBINED WEIGHT 250
POUNDS MAXIMUM STRUCTURAL CAPACITY - 270 POUNDS On Inside Of The Rear Baggage Compartment Door: (TC-375, TC-376, TC-377, TC-393 and TC-400 thru TC-501) **BAGGAGE COMPARTMENT** LOAD IN ACCORDANCE WITH AIRPLANE FLIGHT MANUAL **MAXIMUM STRUCTURAL CAPACITY - 400 POUNDS** June 1982 2-21 ## PLACARDS (Cont'd) In Plain View When Nose Baggage Compartment Door Is Open: # BAGGAGE COMPARTMENT LOAD IN ACCORDANCE WITH AIRPLANE FLIGHT MANUAL MAXIMUM STRUCTURAL CAPACITY — 270 POUNDS # REQUIRED EQUIPMENT FOR VARIOUS CONDITIONS OF FLIGHT Part 91 of the Federal Aviation Regulations specifies the minimum numbers and types of airplane instruments and equipment which must be installed and operable for various kinds of flight conditions. This includes VFR day, VFR night, IFR day, and IFR night. Regulations also require that all airplanes be certificated by the manufacturer for operations under various flight conditions. At certification, all required equipment must be in operating condition and should be maintained to assure continued airworthiness. If deviations from the installed equipment were not permitted, or if the operating rules did not provide for various flight conditions, the airplane could not be flown unless all equipment was operable. With appropriate limitations, the operation of every system or component installed in the airplane is not necessary, when the remaining operative instruments and equipment provide for continued safe operation. Operation in accordance with limitations established to maintain airworthiness, can permit continued or uninterrupted operation of the airplane temporarily. 2-22 June 1982 For the sake of brevity, the Required Equipment Listing does not include obviously required items such as wings, rudders, flaps, engine, landing gear, etc. Also the list does not include items which do not affect the airworthiness of the airplane such as galley equipment, entertainment systems, passenger convenience items, etc. However, it is important to note that ALL ITEMS WHICH ARE RELATED TO THE AIRWORTHINESS OF THE AIRPLANE AND NOT INCLUDED ON THE LIST ARE AUTOMATICALLY REQUIRED TO BE OPERATIVE. To enable the pilot to rapidly determine the FAA equipment requirements necessary for a flight into specific conditions, the following equipment requirements and exceptions are presented. It is the final responsibility of the pilot to determine whether the lack of, or inoperative status of a piece of equipment on his airplane, will limit the conditions under which he may operate the airplane. #### WARNING Ice protection equipment which may be installed on this airplane has not been demonstrated to meet requirements for flight into known icing conditions. #### **LEGEND** Numbers refer to quantities required to be operative for a specified condition. - (-) Indicates that the item may be inoperative for the specified condition. - (*) Refers to the REMARKS AND/OR EXCEPTIONS column for explicit information or reference. Required Equipment Charts are to be found on the pages that follow. | June 19 | | | |---------|--------|--| | _ | | | | _ | Jun | | | 8 | e 1982 | | | | | | 2-24 | SYSTEM | ' | *'' | 1009 | | | | |---------------------------|---|-----|------|--------|-----|---------------------------| | and/or | | | VFF | R Nigt | | | | | | | ĺ | IFR | Day | | | COMPONENT | | | | | IFR | Night | | | | | Ì | | | Remarks and/or Exceptions | | GENERAL | | | | | | , | | Overwater flight | * | * | * | * | * | -*Per FAR 91 | | COMMUNICATIONS | | | | | | | | VHF communications system | * | ж | * | * | * | -*Per FAR 91 | | ELECTRICAL POWER | | | | | | | | Battery | 1 | 1 | 1 | 1 | 1 | - | | DC generator | 2 | 1 | 2 | 2 | 2 | - | | DC loadmeter | 2 | 2 | 2 | 2 | 2 | _ | 2-25 Section II Limitations BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 June 1982 | | Nui | mber | Instal | lled | | | Limitations | | | |--|-----|-----------|--------|-------|-------|---------------------------|-------------|--|--| | SYSTEM | 1 | VFR Day | | | | | | | | | | | VFR Night | | | | | | | | | and/or | | IFR Day | | | | | | | | | COMPONENT | |] | 1 | Night | _ " | | | | | | | _} | | | | | Remarks and/or Exceptions | | | | | FUEL EQUIPMENT | | | | | | [| | | | | Engine driven fuel pump | 2 | 2 | 2 | 2 | 2 | - | | | | | Fuel boost pump | 2 | 2 | 2 | 2 | 2 | 1 - | | | | | Fuel quantity indicator | 2 | 2 | 2 | 2 | 2 | - | Se | | | | Fuel quantity indicator
selector switch | 1 | 1 | 1 | 1 | 1 | - | Serial TC | | | | Fuel pressure indicator | 1 | 1 | 1 | 1 | 1 | - Dual indicating | -1 thru | | | | | | | | | | | 170 | | | | | | } | | | | | -50 | | | | l | ł | i | i | ţ | l | 1 | 7 | | | 2-27 | ICE AND RAIN
PROTECTION | | | | | | | |--|------|-----|-----|--------|-----|----------------| | Alternate static air source | 1 | - | - | 1 | 1 | , - | | Pitot heater | 1(2) | - | - | 1 | 1 | - | | LANDING GEAR Landing gear motor Landing gear position indication lights Landing gear aural warning horn | 1 2 | 1 2 | 1 2 | 1
2 | 1 2 | - | | 2-28 | | Nun | Number Installed | | | | | | | | | |---------|-------------------------------|------|------------------|-------|--------|-------------|--|--|--|--|--| | œ | SYSTEM | | VF | R Day | | | | | | | | | | and/or | | | VF | R Nig. | ht
7 Day | | | | | | | | COMPONENT | | | | | IFR Night | | | | | | | | <u> </u> | - | | | | • | Remarks and/or Exceptions | | | | | | | LIGHTS | | | | | | | | | | | | | Cockpit and instrument lights | * | - | * | - |
 * | -*Lights must illuminate all instruments and controls. | | | | | | | Taxi light | 1 1 | _ | - |]- | - | and differential. | | | | | | | Landing light | 2 | - | * | }- | * | -*Per FAR 91 | | | | | | | Rotating beacon | 1(2) | - | 1 |]- | 1 | - Top beacon must be operative | | | | | | | Position light | 3 | - | 3 | - | 3 | , | | | | | | ۲. | | | | | | | | | | | | | June | | | | | | | | | | | | | <u></u> | | | | 1 | } | | | | | | | | 1982 | | | | 1 | 1 | 1 | | | | | | | ₹V | • | ' ' | l | 1 | 1 | ı | 1 | | | | | | June 1982 | NAVIGATION
INSTRUMENTS | | | | | | | |-----------|------------------------------|-----|---|----|---|---|----------------| | 2 | Altimeter | 1 | 1 | 1 | 1 | 1 | _ | | | Airspeed indicator | 1 | 1 | t | 1 | 1 | | | | Vertical speed | 1 | - | - | - | - | + - | | | Magnetic compass | 1 | 1 | 1 | 1 | 1 | | | | Attitude indicator | 1 | - | ۱. | 1 | 1 |) ₋ | | | Turn and slip indicator | 1 | - | - | 1 | 1 | 1 - | | | Directional gyro | 1 1 | - | _ | 1 | 1 | | | | Clock | 1 | - | - | 1 | 1 |) | | | Transponder | * | * | * | * | * | -*Per FAR 91 | | | Distance measuring equipment | * | * | * | * | * | -*Per FAR 91 | | | Navigation equipment | * | - | - | * | * | ·*Per FAR 91 | | | OXYGEN | | | | | | | | 2-29 | Oxygen system | - | * | * | * | * | -*Per FAR 91 | | - | Nui | mber | Instal | led | | | ે કે | | |------------------------------------|-----|---------|----------|-------|-------|---|----------------|--| | SYSTEM | | VFR Day | | | | | | | | | | | VF | R Nig | ht | | mitations | | | and/or | | | | IFF | ? Day | | ⊣ հոչ ։ | | | COMPONENT | |] | | 1 | IFR | Night | | | | | | • | | | | Remarks and/or Exceptions | | | | VACUUM | | | | | | | | | | Instrument air source | 2 | _ | 2 | 2 | 2 | _ | ŀ | | | Instrument air indicator | 1 | 1 | 1 | 1 | 1 | - Dual indicating | 1 3 | | | Deicing pressure indicator | * | * | * | * | * | -*One required with optional sur-
face deice installation. | Seria | | | ENGINE INDICAT-
ING INSTRUMENTS | | | | | ļ. | | ATC-1 | | | Engine tachometer | 1 | 1 | 1 | 1 | 1 | - Dual indicating | 1 thru | | | Manifold pressure indicators | 1 | 1 | 1 | 1 | 1 | - Dual indicating | 1c. | | | Cylinder head temp gage | 2 | 2 | 2 | 2 | 2 | - | 501 | | | | | | · · | | | |---------------------------|---|-------------|---------------|---|-------------| 1 1 | | | | | | | | | . | | | | | 88 | | | | | | | | | | | | | | N N | | | | | | | 77 | | | | | | | | | | | | | | 7 7 | | | | | | | | | | _ | | | | 7 7 | | | | | | <u> </u> | Ö | | | | | | | or
icat | | | | ļ | | ' 0 | cate | | | | Ì | | . " | ndii
re | | | | İ | | 를 | e ii
atu | | | | | | <u> </u> | Sur | | | | | | AE
TR | res | | | | j | | ENGINE OIL
INSTRUMENTS | Oil pressure indicator
Oil temperature indicator | | | | } | | ш = | 00 | | | | | | | | | | | | ## INTENTIONALLY LEFT BLANK 2-32 June 1982 # SECTION I GENERAL ### **TABLE OF CONTENTS** | SUBJECT PAGE | , | |---|---| | Important Notice | | | Supplements Revision Record | | | Airplane Three View 1-9 | | | Ground Turning Clearance 1-10 | | | Descriptive Data1-11 | | | Engines 1-11 | | | Propellers 1-11 | | | Fuel 1-12 | | | Standard System 1-12 | | | Optional System 1-12 | | | Oil 1-12 | | | Maximum Certificated Weights 1-12 | | | Cabin and Entry Dimensions 1-12 | | | Baggage Space 1-12 | | | Specific Loadings 1-13 | | | Symbols, Abbreviations and Terminology 1-13 | | | Airspeed Terminology 1-13 | | | Meteorological Terminology 1-16 | | | Power Terminology 1-17 | | | Engine Controls and Instruments | | | Terminology 1-17 | | | Section | I | |---------|---| | General | | ## **TABLE OF CONTENTS (Continued)** | SUBJECT | PAGE | |---------------------------------|--------| | Airplane Performance and Flight | | | Planning Terminology | . 1-18 | | Weight and Balance Terminology | . 1-19 | 1-2 June 1982 THANK YOU . . . for
displaying confidence in us by selecting a BEECHCRAFT airplane. Our design engineers, assemblers and inspectors have utilized their skills and years of experience to ensure that the BEECHCRAFT Baron meets the high standards of quality and performance for which BEECHCRAFT airplanes have become famous throughout the world. #### IMPORTANT NOTICE This handbook must be read carefully by the owner and operator in order to become familiar with the operation of the BEECHCRAFT Baron. The handbook presents suggestions and recommendations to help obtain safe and maximum performance without sacrificing economy. The BEECHCRAFT Baron must be operated according to the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual, and/or placards located in the airplane. As a further reminder, the owner and operator of this airplane should also be familiar with the Federal Aviation Regulations applicable to the operation and maintenance of the airplane and FAR Part 91 General Operating and Flight Rules. Further, the airplane must be operated and maintained in accordance with FAA Airworthiness Directives which may be issued against it. The Federal Aviation Regulations place the responsibility for the maintenance of this airplane on the owner and the operator who must ensure that all maintenance is done by qualified mechanics in conformity with all airworthiness requirements established for this airplane. All limits, procedures, safety practices, time limits, servicing, and maintenance requirements contained in this handbook are considered mandatory for the continued airworthiness of this airplane, in a condition equal to that of its original manufacture. Authorized BEECHCRAFT Aero or Aviation Centers or International Distributors or Dealers can provide recommended modification, service, and operating procedures issued by both FAA and Beech Aircraft Corporation, which are designed to get maximum utility and safety from this airplane. #### **USE OF THE HANDBOOK** The Pilot's Operating Handbook is designed to maintain documents necessary for the safe and efficient operation of the Baron. The handbook has been prepared in loose leaf form for ease in maintenance and in a convenient size for storage. The handbook has been arranged with quick reference tabs imprinted with the title of each section and contains ten basic divisions: Section 1 General Section 2 Limitations Section 3 Emergency Procedures Section 4 Normal Procedures Section 5 Performance Section 6 Weight and Balance/Equipment List Section 7 Systems Description Section 8 Handling, Servicing and Maintenance Section 9 Supplements Section 10 Safety Information 1-4 June 1982 #### NOTE Except as noted, all airspeeds quoted in this handbook are indicated Airspeeds (IAS) and assume zero instrument error. In an effort to provide as complete coverage as possible, applicable to any configuration of the airplane, some optional equipment has been included in the scope of the handbook. However, due to the variety of airplane appointments and arrangements available, optional equipment described and depicted herein may not be designated as such in every case. The following information may be provided to the holder of this manual automatically: - Original issues and revisions of Class I and II Service Instructions. - Original issues and revisions of FAA Approved Airplane Flight Manual Supplements. - Reissues and Revisions of FAA Approved Airplane Flight Manuals, Flight Handbooks, Owner's Manuals, Pilot's Operating Manuals and Pilot's Operating Handbooks. This service is free and will be provided only to holders of this handbook who are listed on the FAA Aircraft Registration Branch List or the BEECHCRAFT International Owners Notification Service List, and then only if you are listed by airplane serial number for the model for which this handbook is applicable. For detailed information on how to obtain "Revision Service" applicable to this handbook or other BEECHCRAFT Service Publications consult a BEECHCRAFT Aero or Aviation Center or International Distributor or Dealer or refer to the latest revision of BEECHCRAFT Service Instructions No. 0250-010. BEECH AIRCRAFT CORPORATION EX-PRESSLY RESERVES THE RIGHT TO SUPER-SEDE, CANCEL, AND/OR DECLARE OB-SOLETE, WITHOUT PRIOR NOTICE, ANY PART, PART NUMBER, KIT OR PUBLICATION REF-ERENCED IN THIS HANDBOOK. The owner/operator should always refer to all supplements, whether STC Supplements or Beech Supplements, for possible placards, limitations, normal, emergency and other operational procedures for proper operation of the airplane with optional equipment installed. 1-6 June 1982 #### REVISING THE HANDBOOK Immediately following the title page is the "Log of Revisions" page(s). The Log of Revisions pages are used for maintaining a listing of all effective pages in the handbook (except the SUPPLEMENTS section), and as a record of revisions to these pages. In the lower right corner of the outlined portion of the Log of Revisions is a box containing a capital letter which denotes the issue or reissue of the handbook. This letter may be suffixed by a number which indicates the numerical revision. When a revision to any information in the handbook is made, a new Log of Revisions will be issued. All Logs of Revisions must be retained in the handbook to provide a current record of material status until a reissue is made. #### WARNING When this handbook is used for airplane operational purposes, it is the pilot's responsibility to maintain it in current status. ## AIRPLANE FLIGHT MANUAL SUPPLEMENTS REVISION RECORD Section IX contains the FAA Approved Airplane Flight Manual Supplements headed by a Log of Supplements page. On the "Log" page is a listing of the FAA Approved Supplemental Equipment available for installation on the airplane. When new supplements are received or existing supplements are revised, a new "Log" page will replace the previous one, since it contains a listing of all previous approvals, plus the new approval. The supplemental material will be added to the grouping in accordance with the descriptive listing. #### NOTE Upon receipt of a new or revised supplement, compare the "Log" page just received with the existing "Log" page in the manual. Retain the "Log" page with the latest date on the bottom of the page and discard the other log. #### **VENDOR-ISSUED STC SUPPLEMENTS** When a new airplane is delivered from the factory, the handbook delivered with it contains either an STC (Supplemental Type Certificate) Supplement or a Beech Flight Manual Supplement for every installed item requiring a supplement. If a new handbook for operation of the airplane is obtained at a later date, it is the responsibility of the owner/operator to ensure that all required STC Supplements (as well as weight and balance and other pertinent data) are transferred into the new handbook. 1-8 June 1982 **AIRPLANE THREE-VIEW** #### **GROUND TURNING CLEARANCE** | A Radius fo | or Wing Tip | 29 | feet | 6 | inches | |---------------|-----------------|-----|------|---|--------| | B Radius fo | or Nose Wheel | 12 | feet | 2 | inches | | C Radius fo | or Inside Gear | . 5 | feet | 9 | inches | | (D) Radius fo | or Outside Gear | 15 | feet | 7 | inches | TURNING RADII ARE PREDICATED ON THE USE OF PARTIAL BRAKING ACTION AND DIFFERENTIAL POWER. 1-10 June 1982 Section | General #### **DESCRIPTIVE DATA** #### **ENGINES** Two Continental IO-470-L fuel injected, air cooled sixcylinder, horizontally-opposed engines each rated at 260 horsepower at 2625 rpm. Take-off and Maximum Continuous Power Full throttle and 2625 rpm Maximum One-Engine Inoperative Power Full throttle and 2625 rpm Cruise Climb Power 25.0 in. Hg at 2500 rpm Maximum Cruise Power 24.5 in. Hg at 2450 rpm **PROPELLERS** McCAULEY 2 Blade Hubs: 2AF36C39 Blades: 78BF-0 or 78BFM-0 Pitch Setting at 30 inch Station: Low 14.6°; High 83.0° Diameter: 78 inches maximum, 76 inches minimum or 2 Blade Hubs: 2AF36C89 Blades: 78BFS-0 Pitch Setting at 30 inch Station: Low 15°; High 79° Diameter: 78 inches maximum, 76 inches minimum or 2 Blade Hubs: 2AF34C55 Blades: 78FF-0 Pitch Setting at 30 inch Station: Low 15°; High 79° Diameter: Maximum 78 inches, minimum 76 inches NOTE Other propellers are approved and are listed in the FAA Aircraft Specification 3A16 or are approved by Supplemental Type Certificate. | Section | ļ | |---------|---| | General | | #### **FUEL** Aviation Gasoline 100LL (blue) preferred, 100 (green) minimum grade. ## STANDARD SYSTEM (Main and Auxiliary): ## OPTIONAL SYSTEM (Main and Auxiliary): #### OIL The oil capacity is 12 quarts for each engine. #### WEIGHTS | Maximum Ramp Weight | 4901 lbs | |-------------------------|----------| | Maximum Take-Off Weight | 4880 lbs | | Maximum Landing Weight | 4880 lbs | #### CABIN AND ENTRY DIMENSIONS | Length | 8 ft 6 in. | |---------------|-------------| | Height (Max.) | 4 ft 2 in. | | Width (Max.) | 3 ft 6 in. | | Entrance Door | n. x 36 in. | #### BAGGAGE SPACE AND ENTRY DIMENSIONS | Main Cabin Compartment | 33.5 cu ft | |--------------------------------|------------| | Standard Baggage Door 18.5 in. | x 22.5 in. | | Optional Baggage Door 38 in. | x 22.5 in. | | Nose Compartment | . 12 cu ft | 1-12 June 1982 Section I General SPECIFIC LOADINGS (Maximum Take-Off Weight) ## SYMBOLS, ABBREVIATIONS AND TERMINOLOGY The following Abbreviations and Terminologies have been listed for convenience and ready interpretation where used within this handbook. Whenever possible, they have been categorized for ready reference. #### AIRSPEED TERMINOLOGY - CAS Calibrated Airspeed is the indicated airspeed of an airplane, corrected for position and instrument error. Calibrated airspeed is equal to true airspeed in standard atmosphere at sea level. - GS Ground Speed is the speed of an airplane relative to the ground. - IAS Indicated Airspeed is the airspeed of an airplane as shown on the airspeed indicator. IAS values published in this handbook assume zero
instrument error. - TAS True Airspeed is the airspeed of an airplane relative to undisturbed air, which is the CAS corrected for altitude, temperature, and compressibility. ### Section I General ## BEECHCRAFT Baron 55, A55 Serial TC-1 thru TC-501 - VMCA Air minimum control speed is the minimum flight speed at which the airplane is directionally controllable as determined in accorddance with Federal Aviation Regulations. The airplane certification conditions include one engine becoming inoperative and windmilling; a 5° bank towards the operative engine; takeoff power on operative engine; landing gear up; flaps up; and most rearward C.G. For some conditions of weight and altitude, stall can be encountered at speeds above VMCA as established by the certification procedure described above, in which event stall speed must be regarded as the limit of effective directional control. - VSSE The Intentional One-Engine-Inoperative Speed is a speed above both VMCA and stall speed, selected to provide a margin of lateral and directional control when one engine is suddenly rendered inoperative. Intentional failing of one engine below this speed is not recommended. - VA Maneuvering Speed is the maximum speed at which application of full available aero-dynamic control will not overstress the airplane. - VF Design flap speed is the highest speed permissible at which wing flaps may be actuated. - VFE Maximum Flap Extended Speed is the highest speed permissible with wing flaps in a prescribed extended position. 1-14 June 1982 - VLE Maximum Landing Gear Extended Speed is the maximum speed at which an airplane can be safely flown with the landing gear extended. - VLO Maximum Landing Gear Operating Speed is the maximum speed at which the landing gear can be safely extended or retracted. - VNE Never Exceed Speed is the speed limit that may not be exceeded at any time. - VNO Maximum Structural Cruising Speed is the or VC speed that should not be exceeded except in smooth air and then only with caution. - VS Stalling Speed or the minimum steady flight speed at which the airplane is controllable. - VSO Stalling Speed or the minimum steady flight speed at which the airplane is controllable in the landing configuration. - VX Best Angle-of-Climb Speed is the airspeed which delivers the greatest gain of altitude in the shortest possible horizontal distance. - Vy Best Rate-of-Climb Speed is the airspeed which delivers the greatest gain in altitude in the shortest possible time. #### METEOROLOGICAL TERMINOLOGY #### ISA International Standard Atmosphere in which - (1) The air is a dry perfect gas; - (2) The temperature at sea level is 15° Celsius (59° Fahrenheit); - (3) The pressure at sea level is 29.92 in. Hg (1013.2 millibars); - (4) The temperature gradient from sea level to the altitude at which the temperature is -56.5° C (-69.7° F) is -0.00198° C (-0.003566° F) per foot and zero above that altitude. #### OAT Outside Air Temperature is the free air static temperature, obtained either from inflight temperature indications adjusted for instrument error and compressibility effects, or ground meteorological sources. ## Indicated Pressure Altitude The number actually read from an altimeter when the barometric subscale has been set to 29.92 in. Hg (1013.2 millibars). ## Pressure Altitude Altitude measured from standard sea-level pressure (29.92 in. Hg) by a pressure or barometric altimeter. It is the indicated pressure altitude corrected for position and instrument error. In this Handbook, altimeter instrument errors are assumed to be zero. Position errors may be obtained from the Altimeter Correction Chart. 1-16 June 1982 Section I General Station Actual atmospheric pressure at field Pressure elevation. Wind The wind velocities recorded as variables on the charts of this handbook are to be understood as the headwind or tailwind components of the reported winds. #### POWER TERMINOLOGY Take-off and The highest power rating not limited by Maximum time. Continuous Cruise Power recommended for cruise climb. Climb Maximum The highest power settings recom- Cruise mended for cruise. Recommended Intermediate power settings Cruise for which cruise power settings are presented. Economy The lowest power setting for which Cruise power settings are presented. ## ENGINE CONTROLS AND INSTRUMENTS TERMINOLOGY Throttle The lever used to control the introduc-Controls tion of a fuel-air mixture into the intake passages of an engine. | Section I
General | BEECHCRAFT Baron 55, A55
Serial TC-1 thru TC-501 | |------------------------------|---| | Propeller
Controls | This lever requests the governor to maintain rpm at a selected value and, in the maximum decrease rpm position, feathers the propellers. | | Mixture
Controls | This lever, in the idle cut-off position, stops the flow of fuel at the injectors and in the intermediate thru the full rich positions, regulates the fuel air mixture. | | Propeller
Governors | The governors maintain the selected rpm requested by the propeller control levers. | | Manifold
Pressure
Gage | An instrument that measures the absolute pressure in the intake manifold of an engine, expressed in inches of mercury (in. Hg). | | Tachometers | An instrument that indicates the rotational speed of the propeller (and engine) in revolutions per minute (rpm). | ## AIRPLANE PERFORMANCE AND FLIGHT PLANNING TERMINOLOGY Climb The ratio of the change Gradient in height during a portion of a climb, to the horizontal distance traversed in the same time interval. 1-18 June 1982 Section I General Demonstrated Crosswind Velocity The maximum 90° crosswind component for which adequate control of the airplane during take-off and landing was actually demonstrated during certification tests. Accelerate-Stop Distance The distance required to accelerate to a specified speed and, assuming failure of an engine at the instant that speed is attained, to bring the airplane to a stop. Accelerate-Go Distance The distance required to accelerate to a specified speed and, assuming failure of an engine at the instant that speed is attained, feather inoperative propeller and continue takeoff on the remaining engine to a height of 50 feet. MEA Minimum enroute IFR altitude. Route Segment A part of a route. Each end of that part is identified by: (1) a geographical location; or (2) a point at which a definite radio fix can be established. GPH U.S. Gallons per hour. #### WEIGHT AND BALANCE TERMINOLOGY Reference Datum An imaginary vertical plane from which all horizontal distances are measured for balance purposes. | Section I
General | BEECHCRAFT Baron 55, A55
Serial TC-1 thru TC-501 | |--|---| | Station | A location along the airplane fuselage usually given in terms of distance from the reference datum. | | Arm | The horizontal distance from the reference datum to the center of gravity (C.G.) of an item. | | Moment | The product of the weight of an item multiplied by its arm. (Moment divided by a constant is used to simplify balance calculations by reducing the number of digits.) | | Airplane
Center of
Gravity
(C.G.) | The point at which an airplane would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane. | | C.G. Arm | The arm obtained by adding the air-
plane's individual moments and
dividing the sum by the total weight. | | C.G. Limits | The extreme center of gravity locations within which the airplane must be operated at a given weight. | | Usable Fuel | Fuel available for flight planning. | | Unusable
Fuel | Fuel remaining after a runout test has been completed in accordance with governmental regulations. | | Standard
Empty
Weight | Weight of a standard airplane including unusable fuel, full operating fluids and full oil. | 1-20 June 1982 Section I General | Basic
Empty
Weight | Standard empty weight plus optional equipment. | |-------------------------------|---| | Payload | Weight of occupants, cargo and baggage. | | Useful
Load | Difference between ramp weight and basic empty weight. | | Maximum
Ramp
Weight | Maximum weight approved for ground maneuvering. (It includes weight of start, taxi, and run up fuel). | | Maximum
Take-off
Weight | Maximum weight approved for the start of the take off run. | | Maximum
Landing
Weight | Maximum weight approved for the landing touchdown. | | Zero Fuel
Weight | Weight exclusive of usable fuel. | ## INTENTIONALLY LEFT BLANK 1-22 June 1982